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AFIT/GLM/ENS/07-09 

Abstract 

 
 Successful space-based technologies like satellite imagery and GPS have 

increased military demand for a rapid-response launch capability.  AF Space Command’s 

Operationally Responsive Spacelift program was developed to ensure that the AF has the 

capability to launch a payload into orbit within hours of a tasking notification, and 

requires development of a new space launch vehicle.  The Reusable Military Launch 

Vehicle (RMLV) is currently in the design phase.  The AF Research Laboratory 

sponsored development of the MILEPOST simulation model in order to assess the 

turnaround time, and thus responsiveness, of various design alternatives.  The focus of 

this thesis is to improve the fidelity of the MILEPOST model by assessing the logistics 

manpower required to support the modeled turnaround activities.   

      The research determined the appropriate AF organizational structure and 

manpower requirements for RMLV ground support agencies based on the activities 

modeled in MILEPOST.  This information will be incorporated into the model in future 

research efforts, resulting in the capability to evaluate RMLV design alternatives based 

on both turnaround time and workforce requirements.  
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1 This paper will refer to the vehicle as an RMLV, as the AF’s military version of a reusable space-launch 
vehicle.  Other terminology appears within the literature describing similar concepts, including Reusable 
Launch Vehicle (RLV); Hybrid Launch Vehicle (HLV); and Two-Stage-to-Orbit (TSTO) vehicle. 
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DETERMINING LOGISTICS GROUND SUPPORT MANPOWER REQUIREMENTS 
 

FOR A REUSABLE MILITARY LAUNCH VEHICLE 
 
 
 

I.  Introduction 
 
 

In an era of growing uncertainty and rapidly advancing technology, military 

superiority in space provides a critical asymmetric advantage over our enemies, securing 

“the ultimate high ground” for our warfighters (Air Force, AFDD 2-2, 2001: vii).  

Looking toward the future, the Air Force (AF) is seeking to “enhance modern military 

operations across the spectrum of conflict” (Air Force, AFDD 2-2, 2001: 1) through the 

continued development of space operations and the incorporation of space capabilities 

into every aspect of military operations.  Specifically, in support of developing space 

operations, the AF is in the development phase of a Reusable Military Launch Vehicle 

(RMLV)1 program that will provide quick-response access to space for the delivery of 

payloads and other operations. 

This chapter will first review the background leading to the development and 

design requirements for the RMLV, synthesizing national, AF, and AF Space Command 

(AFSPC) policy into the final requirements defined by the AF for RMLV development.  

Second, the research problem will be presented along with a definition of logistics 

support requirements and an explanation of their importance to the RMLV design and 

development process.  Next, research questions will be enumerated to define the scope of 
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research.  The chapter will conclude by identifying the assumptions and limitations that 

bound this research effort. 

Background 

 Requirements for the RMLV program were reviewed in national policy, AF 

doctrine, and AFSPC mission needs, concluding with the RMLV requirements defined by 

the Program Research and Development announcement to potential bidders in 2005.  

This background provides a comprehensive overview of the origins and intent of the 

concept of developing the RMLV, clearly defining the mission and required capabilities 

of this future vehicle. 

National Space Policy. 

 The importance of space operations has been recently reinforced in the 

President’s National Space Policy, delivered August 31, 2006.  This policy reiterated the 

vital nature of space operations to national interests and established the intent of the 

United States to: 

preserve its rights, capabilities, and freedom of action in space; dissuade or deter 
others from either impeding those rights or developing capabilities intended to do 
so; take those actions necessary to protect its space capabilities; respond to 
interference; and deny, if necessary, adversaries the use of space capabilities 
hostile to U.S. national interests (President, 2006: 1). 

 
In support of this policy, the Secretary of Defense is tasked to: 

[m]aintain the capabilities to execute the space support, force enhancement, space 
control, and force application missions;…[p]rovide, as launch agent for both the 
defense and intelligence sectors, reliable, affordable, and timely space access for 
national security purposes;…[and p]rovide space capabilities to support 
continuous, global strategic and tactical warning as well as multi-layered and 
integrated missile defenses (President, 2006: 4). 

 
 National space policy, then, as a source for the basic design goals of the RMLV, 

defines the requirement for a dependable, cost-effective, and responsive space launch 
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program capable of performing deterrence, protection, response to interference, and 

denial of access missions in support of national security.  Another source that defines the 

expectation of capabilities for an RMLV is AF doctrine concerning space operations. 

AF Space Operations Doctrine. 

AF doctrine regarding space operations “views air, space, and information as key 

ingredients for dominating the battlespace and ensuring superiority” (Air Force, AFDD 2-

2, 2001: 1); that is, air and space operations have a synergistic relationship in the military 

environment.  Indeed, since the successful use of GPS in Desert Storm, space-based 

capabilities have been recognized as providing the “ultimate high ground of US military 

operations” (Air Force, AFDD 2-2, 2001: vii).  As a result, space doctrine has been 

developed from the existing model of air power doctrine, defining how space operations 

support each of the “principles of war, tenets of air and space power, [and] Air Force 

functions” (Air Force, AFDD 2-2, 2001: 6). 

The nine principles of war and seven tenets of air and space power apply to space 

assets in a similar manner as they are applied to airpower assets, while recognizing the 

unique characteristics of space capabilities.  For instance, under the second tenet of air 

and space power, space capabilities should be employed in a manner to maximize 

flexibility and versatility.  Most satellites are not flexible by nature in their abilities to be 

quickly deployed, maneuvered, or adjusted; however, they provide increased flexibility 

of communications to ground forces (Air Force, AFDD 2-2, 2001: 7).  Similarly, each of 

the principles and tenets developed for the use of airpower is adapted to provide a guide 

for the employment of space capabilities.   



 

4 

There are 16 AF functions that space capabilities are aligned against, sometimes 

in a primary role, and sometimes as a supporting capability.  These functions include 

counterspace (offensive and defensive), spacelift, counterinformation, command and 

control, intelligence, surveillance, reconnaissance, navigation and timing, weather 

services, combat search and rescue, counterair, counterland, countersea, special 

operations, strategic attack, and airlift and air refueling.  Of these functions, this paper is 

primarily concerned with spacelift, which “projects power by delivering satellites, 

payloads, and materiel to or through space” (Air Force, AFDD 2-2, 2001: 11).  The AF 

defines three strategies and one emerging strategy for spacelift: 

1.  Launch to deploy achieves a satellite system’s designed initial operational 

capability. This strategy uses a launch-on-schedule approach where launches are 

planned in advance and executed in accordance with the current launch schedule.  

2.  Launch to sustain replaces satellites nearing the end of their useful life, 

predicted to fail, or that have failed.  

3.  Launch to augment increases operational capability above the designed 

operational capability in response to war, crisis, or contingency.  

4.  Launch to operate is an emerging strategy to increase the useful life of space 

assets through scheduled or on-demand launches providing space support such as 

refueling or repair (Air Force, AFDD 2-2, 2001: 11). 

According to this doctrine, the AF seeks to realize a spacelift platform with all-weather 

capability and responsiveness on the order of days or hours (Air Force, AFDD 2-2, 2001: 

11).  
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AF doctrine, then, as a source for the basic design goals of the RMLV, defines the 

requirement for an all-weather launch-vehicle capable of performing deployment, 

sustainment, augmentation, and operation missions within days or hours of initial tasking.  

A third source for design requirements is the Operationally Responsive Spacelift program 

directed by AFSPC. 

Operationally Responsive Spacelift. 

In support of national space policy and AF doctrine, AFSPC has developed an 

ORS program to ensure that the AF has the capability to “rapidly put payloads into orbit 

and maneuver spacecraft to any point in earth-centered space, and to logistically support 

them on orbit or return them to earth” (AFSPC, 2001: 1).  ORS is cited as the “key 

enabler for conducting the full spectrum of military operations in space and for achieving 

space superiority” (AFSPC, 2001: 2).  The ORS mission, as defined by AFSPC, requires 

four key capabilities: 

1) Rapid satellite deployment in support of crises and combat operations; 

2) Peacetime launch for sustainment of satellite constellations; 

3) “Recoverable, rapid-response transport to, through, and from space;” 

4) Integrated mission planning to enable quick-response execution (AFSPC, 

2001: 2). 

The following characteristics should be part of any system developed in support of ORS:  

responsive, maneuverable, operable, economical, survivable, interoperable and flexible 

(AFSPC, 2001: 2).  Essentially, any vehicle supporting the ORS mission must be able to 

launch within hours in response to a mission tasking; maneuver among orbits; be reliable, 

supportable, and maintainable enough to consistently meet mission requirements; be cost-
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effective; be hardened against a threat environment; be able to be integrated into a joint 

and allied operating environment; and be able to deliver a variety of payloads to multiple 

theaters (AFSPC, 2001: 2).   

 These requirements apply to the vehicle as a whole.  For the purposes of this 

thesis, the RMLV is primarily concerned with the first stage of the vehicle, which is 

reusable and will be recovered and re-launched, driving turnaround time capabilities.  As 

a result, we will not be addressing the orbital capabilities required of the vehicle.   

The ORS program, then, as a source for the basic design goals of the RMLV, 

defines the requirement for a reliable, maintainable, cost-effective vehicle that can be 

launched within hours of tasking in support of wartime or peacetime operations.  Given 

the consistency of launch vehicle requirements throughout national, AF, and Space 

Command policy, the RMLV concept has been developing as described in the following 

section to support mission requirements. 

Reusable Military Launch Vehicles. 

 In 2004, the AF Requirements for Operational Capabilities Council approved the 

Analysis of Alternatives (AoA) for ORS, establishing the Hybrid Launch Vehicle (HLV) 

as the standard for AF reusable launch vehicle acquisition.  The AoA evaluated a wide 

range of current and developmental space launch options, including Evolved Expendable 

Launch Vehicles (EELVs) like the Delta 4 and Atlas 5 currently in use; new Expendable 

Launch Vehicles with three solid stages or two liquid stages; fully reusable Two-Stage-

to-Orbit vehicles with a variety of fuel alternatives; and HLVs with reusable boosters and 

liquid or solid expendable upper stages.  “The HLV concept was conceived specifically 

to [provide] affordability, responsiveness, simplicity of operations, and reliability for a 
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wide range of payload classes” (Hybrid Launch Vehicle, 2005) and, indeed, the AoA 

determined that the HLV provided the best projected combination of low development 

cost, low per-launch cost, potential 2-4 day turnaround time, and low technical risk 

(Hickman, 2005: 7).  As a result, the Statement of Objectives (SOO) and the Program 

Research and Development Announcement (PRDA) for the RMLV have specified an 

HLV with the operational requirements outlined in Table 1 as the AF platform for 

Operationally Responsive Spacelift. 

Table 1. RMLV Performance Requirements (HQ SMC, SOO, 2005: 3) 

 

No Foreign Designed  
Components 

Domestic Production 
Required

Use of Foreign Designed Critical Components

Blue Suit Blue Suit & ContractorBlue Suit Operators  
90%*50%*First Stage RTB  – Intact Abort  

6 Operational First  
Stages 

6 Operational First 
StagesHLV OS Initial Production Size 

$5M per unit $10M per unitHLV OS Upper Stages Production Costs

Required RequiredFirst Stage Return to Base (RTB) – Nominal 
Mission  

1/6 current EELV - M  
launch costs 

1/3 current EELV -M 
launch costs

HLV OS Recurring Flight Cost  
24 hours 48 hoursFirst Stage Turn - Around Time  

Objective Threshold Operational Parameter

No Foreign Designed  
Components 

Domestic Production 
Required

Use of Foreign Designed Critical Components

Blue Suit Blue Suit & ContractorBlue Suit Operators  
90%*50%*First Stage RTB  – Intact Abort  

6 Operational First  
Stages 

6 Operational First 
Stages

$5M per unit $10M per unit

Required RequiredFirst Stage Return to Base (RTB) – Nominal 
Mission  

1/6 current EELV - M  
launch costs 

1/3 current EELV -M 
launch costs

24 hours 48 hoursFirst Stage Turn - Around Time  
Objective Threshold Operational Parameter

 
 

In summary, the current expectation is a fleet of six reusable RMLV boosters, each with a 

24-hour turnaround time.  Conceptually, the mission sequence shown in Figure 1 has 

been envisioned for RMLV Operations: 

 

  

 
 
 

 
 

Figure 1.  Pictorial Representation of RMLV Operations  
(HQ SMC, HLV Photos, 2005: 3, 6, 8) 
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In general, a vertical-launch, horizontal-landing vehicle is envisioned, but the 

Industry Day instructions to bidders allow for any launch and landing configuration that 

meets the operational parameters outlined in Table 1 (HQ SMC Q&A, 2005: 1st Set, 

Question 21).  Thrust and lift capability requirements are also outlined in the Statement 

of Objectives, but designers are free to use any engine and propellant combinations they 

like to achieve those objectives in an initial demonstrator, with the limitation that the 

final RMLV should use domestic components as indicated in the operational parameters 

(HQ SMC Q&A, 2005: 1st Set, Question 32). 

As with any developmental platform, particularly one using advanced 

technologies, several different design alternatives may be proposed to meet the objectives 

outlined in this section.  These alternatives will be evaluated based on technical, risk, and 

cost/price criteria (HQ SMC PRDA, 2005: J).  The technical evaluation is based on the 

bidders’ ability to meet the requirements outlined in the Statement of Objectives; 

however, the ability to meet these requirements is based on more than simply the 

technical composition of the vehicle.  Identifying the logistics support required by a 

future fleet of RMLVs is a critical aspect of ensuring the best vehicle to support national 

and Air Force spacelift objectives. 

Problem  

The ability to meet turnaround time and recurring flight cost goals is heavily 

influenced by a platform’s logistics support requirements.  Lessons learned from the 

Space Shuttle indicate that there is room for improvement in designing for “operability, 

supportability, and dependability” of future launch vehicles (McCleskey, 2005: 131).  

The AF requires that ORS be “completely supportable within DoD maintenance 
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principles and emphasize lean, responsive, and economical support systems” (AFSPC, 

2001: 5.1.2).  Any systems developed in support of ORS are expected to utilize AF 

standard logistics support and maintenance procedures in order to meet mission 

requirements.  “Reliability, maintainability, supportability, and disposal considerations 

must be emphasized to meet readiness and life cycle cost objectives” (AFSPC, 2001: 

5.1.2).  Clearly, logistics support is an important factor in the mission success of the 

RMLV, and it is a factor that can begin to be evaluated even in this early stage of 

development. 

“Logistics requirements for launch systems are largely driven by the choices 

made during the design process and decisions about how the design will be supported in 

its operating environment” (Morris, 1997: 1).  In order to support the assessment of 

design impact on turnaround times, AFIT graduate researchers developed MILEPOST, a 

discrete-event simulation tool that models the ground support process from an RMLV 

landing to its next launch.  Ground support operations, or regeneration activities, include 

vehicle recovery, maintenance, and pre-launch activities, and were developed using a 

synthesis of similar activities required for aircraft, EELVs, Intercontinental Ballistic 

Missiles (ICBMs), and the Space Shuttle to provide the most comprehensive and accurate 

model of possible RMLV turnaround operations (Stiegelmeier, 2006; Pope, 2006; 

Martindale, 2006).  The development and characteristics of the MILEPOST model are 

discussed in greater detail in Chapter III, Introduction to MILEPOST.  The primary 

benefit of this model, however, is that it allows users to input certain design features, 

such as number of engines, type of propellant, and integration sequence, and receive an 

output of average turnaround time based on the ground support actions required for their 
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design.  At the same time, computer simulation models are being used to map the 

operation cycle of the vehicle from launch to landing using a continuous simulation 

model developed by the AF Research Laboratory (AFRL).  The intent of these models is 

to introduce logistics support considerations into RMLV operations in the design phase.   

In its current form, MILEPOST assumes infinite resource availability for ground 

support actions.  Like other models, the end goal of MILEPOST is to assess the 

turnaround time and logistics support requirements for a proposed RMLV; also like other 

models, MILEPOST is “predicated on the assumption that these requirements should be 

based on the maintenance actions generated by each mission” (Morris, 1997: 2).  This 

research will seek to improve the fidelity of the model by assessing the manpower 

resources required to perform the ground maintenance actions necessary to meet the 

operational requirements for a fleet of RMLVs.   

Research Objective  

The objective of this research is to develop an estimate of the logistics workforce 

required to support the regeneration activities identified in MILEPOST.  This workforce 

will be based on AF standards for organization and manpower assignment and designed 

to meet operational requirements as defined by ORS objectives and captured by the 

MILEPOST model.  The following research questions provide a framework for the 

research and a step-by-step process for assessing the logistics manpower support 

requirements for a fleet or RMLVs. 

1.  How do current AF Specialty Codes (AFSCs) support the performance of the 

ground support tasks identified in MILEPOST? 
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2.  What AF organizational structure is most appropriate for RMLV logistics and 

maintenance support? 

3.  What are the projected total AF manpower requirements to support RMLV 

regeneration? 

4.  What will the life cycle cost and training ramifications be as the RMLV 

platform enters the AF inventory? 

Following a literature review, an introduction to the MILEPOST model, and a description 

of research methodology, each of these questions was addressed in turn to achieve the 

final objective of capturing the logistics workforce implications of the RMLV program. 

Assumptions and Limitations 

 Based on the RMLV requirements outlined above in the PRDA, this research 

assumed an RMLV fleet size of six vehicles, each with a reusable first stage booster and 

expendable second-stage rockets.  The six boosters formed the basis of the logistics 

support requirements assessed in this research. 

 Additionally, although not strictly required by the PRDA, this research assumed 

that the vehicle would take off vertically and land horizontally from either Cape 

Canaveral Air Force Station or Vandenberg Air Force Base.  For the purposes of 

assessing the organizational structure and manpower requirements, a blue-suit workforce 

was assumed.  This provides an analysis of the capability of the AF to provide the 

required support; portions of this support may, at a later time, be awarded to contractors 

or government civilians as deemed appropriate by the RMLV user. 

 This assessment was also limited to supporting the regeneration tasks identified in 

MILEPOST.  Other support functions may be required based on the final RMLV design 
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characteristics; however, those tasks identified in MILEPOST have been validated by 

experts in the field as representative of the significant design alternatives under 

consideration, as is further discussed in Chapter III, Introduction to MILEPOST.   

Finally, in order to establish the appropriate organizational structure and thereby 

project total manpower requirements, an RMLV mission statement must be assumed.  

Based upon the objectives and requirements defined by National Space Policy, AF Space 

Operations Doctrine, and AF Space Command Policy, the RMLV mission was defined in 

the following manner:  The mission of the RMLV fleet is to preserve the nation’s 

freedom of operations in space by providing dependable, responsive spacelift capability 

to deliver payloads supporting deployment, sustainment, augmentation, and operations 

missions within hours or days of initial tasking. 

Summary 

 This chapter has provided a review of the background concerning ORS and the 

development of requirements for a reusable launch vehicle, as well as a definition of the 

problem facing RMLV development regarding the assessment of logistics support 

requirements.  A definition of the research scope and process has been presented for 

identifying the logistics manpower required to support a fleet of RMLVs.  Assumptions 

and limitations, including the RMLV mission statement, have been addressed that will 

provide the foundation for reaching the research objective.  The next chapter will present 

a review of the literature relevant to each of the research questions, investigating AF 

policy and information from aircraft, EELVs, missiles, and NASA to provide the most 

comprehensive framework for developing the RMLV logistics workforce. 
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II.  Literature Review 

A great deal of literature, from both commercial and government sources, exists 

concerning logistics support requirements for aerospace platforms.  Literature was 

reviewed to first provide a solid justification for this line of research, and then to address 

each of the research questions in turn.  The progression of this chapter follows the 

investigation of the body of knowledge concerning: 

1.  The importance of logistics manpower considerations in aerospace vehicle 

design; 

2.  The definition of “logistics support” manpower as it will be utilized in this 

thesis, and the correlation to current AFSCs; 

3.  Organizational structure; 

4.  The process of determining manpower requirements for aerospace vehicles; 

5.  And life cycle cost considerations for aerospace platforms. 

The purpose of this review was to establish a clear direction for the research effort of 

each investigative question, culminating in an overall estimate of the RMLV logistics 

workforce. 

Vehicle Design and Logistics Manpower Considerations 

 As discussed in Chapter I, Introduction, the objective of this research was to 

develop an estimate of the logistics manpower required to support the regeneration 

activities identified in MILEPOST for an RMLV.  Past experience and current 

engineering disciplines suggest that adopting a comprehensive view of systems 
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comprising an aerospace platform early in and throughout the design process is critical to 

its success over the span of its life cycle.   

Systems Engineering and Vehicle Design. 

 Systems Engineering is defined by the International Council on Systems 

Engineering (INCOSE) as “an interdisciplinary approach and means to enable the 

realization of successful systems” (What is, 2006).  It can be generically applied to any 

system under development, and focuses on “defining customer needs and required 

functionality early in the development cycle, documenting requirements, then proceeding 

with design synthesis and system validation” while considering, throughout the process, 

all operations, cost and schedule, performance, training and support, test, and disposal 

aspects of the finished system (What is, 2006).  As an organization, INCOSE was 

originally formed in response to the need for “qualified engineers…who could think in 

terms of a total system…rather than just a specific discipline” (Genesis, 2006).  The need 

for a system-wide approach had, in turn, been generated by the increasing complexity of 

systems under development and the extensive integration requirements of system 

components. 

This trend holds particularly true in the aerospace industry as technologies like 

Integrated Vehicle Health Management (IVHM) “become increasingly important to 

fighters and bombers, commercial and military transports, rotorcraft, spacecraft, and 

satellites” and demand input regarding the “health of the entire vehicle including 

avionics, propulsion, actuators, environmental control, electrical components, and 

structures” (Ofsthun, 2002: 21).  In fact, the increasing interest in IVHM for developing 

platforms reinforces the systems engineering principles described above as IVHM design 
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“must be part of the overall design process and viewed as a system engineering 

discipline” if it is to overcome the limitations currently imposed by retrofitting IVHM 

systems into existing platforms at a component level and achieve the full capability of 

total vehicle health management (Barrientos, 2005: 3).   

Specifically as regards spacecraft, the complexity of the systems under 

development has led to the incorporation of systems engineering principles as a 

fundamental aspect of spacecraft design.  Space systems engineering is defined as “the art 

and science of developing an operable system capable of meeting mission requirements 

within imposed constraints including (but not restricted to) mass, cost, and schedule” 

(Griffin, 2004: 2).  In recognition of the importance of Systems Engineering in aerospace 

design, NASA formally adopted Systems Engineering as an organization-wide standard 

in 1989, developing a training program and accompanying handbook to assist engineers 

in applying the practice to NASA projects (Shishko, 2006: ix). 

In addition to the wealth of support for systems engineering principles in the 

commercial sector and at NASA, the Department of Defense has established them as part 

of its acquisition process.  “DoD policy and guidance recognize the importance of and 

introduce the application of a systems engineering approach in achieving an integrated, 

balanced system solution” (Defense Acquisition Guidebook, 2006: 4.0).  The Defense 

Department’s goal is to apply systems engineering processes early in concept definition 

and throughout the system life cycle in order to develop reliable and maintainable 

systems that optimize performance while minimizing total ownership costs (Defense 

Acquisition Guidebook, 2006: 4.0-4.1).   
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Logistics Considerations and Systems Engineering. 

In short, systems engineering will be critical to the RMLV design process; and 

logistics considerations are critical to sound systems engineering processes.  The ability 

to achieve operationally effective systems at an affordable cost is reliant upon many 

factors, represented below.  Of these, logistics considerations directly address the 

Maintainability, Operations, Maintenance, and Logistics components of the Defense 

Department’s overall goal of affordable operational effectiveness for developmental 

systems, depicted in Figure 2. 

 

Figure 2.  Achieving Affordable System Operational Effectiveness  
(Defense Acquisition Guidebook, 2006: 4.4) 
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Previous AF design efforts like the B-2 stealth bomber have recognized the importance of 

logistics considerations in systems engineering efforts. 

A key aspect of the implementation of the B-2 systems engineering process was 
the integration of the S[ystem] P[rogram] O[ffice] requirement’s team with the 
contractor’s design team, including manufacturing, Quality Assurance, and 
logistics functionals into a cohesive program (Griffin, 2006: 51). 

 
Further, changes in the acquisition process like incremental or spiral development 

strategies have blurred the chronological boundaries between design, development, 

deployment, and sustainment phases of system development.  The Department of 

Defense now recognizes that: 

Effective sustainment of weapons systems begins with the design and 
development of reliable and maintainable systems through the continuous 
application of a robust systems engineering methodology that focuses on total 
system performance.  L[ife] C[ycle] L[ogistics] should be considered early and 
iteratively in the design process, and life cycle sustainment requirements are an 
integral part of the systems engineering process (Defense Acquisition Guidebook, 
2006: 5.2 ). 

 
While systems engineering incorporates a wide range of disciplines, it is clear that 

logistics considerations are an important part of the process. 

 Additionally, NASA attributes the “primary influence in the high costs of current 

launch systems…[to] the operations, maintenance and infrastructure portion of the 

program's total life cycle costs” (Fox, 2001: 439).  While exact figures vary, it is well-

established that operation and maintenance costs, which can be generally categorized as 

logistics support, form a significant factor in the total life cycle cost considerations for an 

aerospace vehicle.  In fact, the Defense Acquisition Guide, which defines Operating and 

Support Costs as “the costs…of personnel, equipment, supplies, software, and services 

associated with operating, modifying, maintaining, supplying, training, and supporting a 

http://akss.dau.mil/dag/Guidebook/IG_c4.4.9.asp
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system in the DoD inventory” (Defense Acquisition Guidebook, 2006: 3.1.3), depicts 

them as the largest portion of total life cycle costs, as shown in Figure 3.   

 

Figure 3.  Life-Cycle Cost Components (Defense Acquisition Guidebook, 2006: 3.1.2) 

 Given the significant role of logistics elements in effective systems engineering 

principles as well as their contribution to total system cost, it can be concluded that 

logistics considerations will be critical throughout the RMLV design process. 

 Manpower Estimates and Logistics Considerations. 

 Logistics considerations, as a general category, include many elements addressed 

in the previous sections, including maintenance, supplies, and personnel.  The personnel 

element is the primary focus of this thesis, and is specifically targeted by the Department 

of Defense as a critical component of the affordability considerations of the system 

acquisition process.  Program affordability “is part of the Joint Capabilities Integration 

and Development System analysis process, which balances cost versus performance in 

establishing key performance parameters” before a project is even approved for initiation 

(Defense Acquisition Guidebook, 2006: 3.2.1).  Assessing program affordability requires 

demonstrating that the “program’s projected funding and manpower requirements are 
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realistic and achievable” within the context of the DoD component’s corporate long-term 

goals (Defense Acquisition Guidebook, 2006: 3.2.2). 

For Major Defense Acquisition Programs, 10 U.S.C. 2434 requires the Secretary 
of Defense to consider the estimate of the personnel required to operate, maintain, 
support, and provide system-related training, in advance of approval of the 
development, or production and deployment of the system (Defense Acquisition 
Guidebook, 2006: 3.5). 

 
NASA, likewise, recognizes the importance of the role of manpower considerations 

within logistics planning.  Having identified Integrated Logistics Support as one of eight 

engineering specialties within the overall Systems Engineering Process (Shisko, 2006: 

91), NASA goes on to specify Human Resources and Personnel Planning as one of the 

nine elements that fall within the responsibilities of the Integrated Logistics engineers 

(Shisko, 2006: 99).  Specifically, these activities include “actions required to determine 

the best skills-mix, considering current and future operator, maintenance, engineering, 

and administrative personnel costs” (Shisko, 2006: 99). 

 In summary, professional and trade-specific literature identify systems 

engineering as a critical aspect of aerospace vehicle design, logistics considerations as a 

critical aspect of systems engineering, and manpower considerations as a critical aspect 

of logistics.  This thesis, therefore, will proceed on the conclusion that determining the 

logistics manpower requirements for supporting an RMLV fleet is a valuable contribution 

to the current design process. 

Defining Logistics Support Manpower 

 In order to address the first investigative question, regarding how current AFSCs 

support the performance of the ground support tasks identified in MILEPOST, a 
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definition is required for ground support and logistics support and their relationship to the 

current AFSC structure. 

   Defining Logistics Support and Ground Support. 

Logistics, as officially defined by the Council of Supply Chain Management 

Professionals (CSCMP), is a broad concept that includes the “process of planning, 

implementing, and controlling procedures for the efficient and effective transportation 

and storage of goods including services” (Supply Chain, 2006).  Logistics Management is 

defined as “that part of supply chain management that plans, implements, and controls 

the efficient, effective forward and reverse flow and storage of goods, services, and 

related information between the point of origin and the point of consumption in order to 

meet customers’ requirements” (Supply Chain, 2006).  These generic, commercial 

definitions concentrate on the market aspects of providing goods and services in response 

to requirements.   

Unfortunately, by focusing on transportation and storage of finished goods or 

services, these definitions shed little light on the role of logistics in development and 

deployment of a launch vehicle.  In the military arena, however, logistics is more 

specifically defined as:  

those aspects of military operations that deal with: a. design and development, 
acquisition, storage, movement, distribution, maintenance, evacuation, and 
disposition of materiel; b. movement, evacuation, and hospitalization of 
personnel; c. acquisition or construction, maintenance, operation, and disposition 
of facilities; and d. acquisition or furnishing of services (DoD, JP-1, 2006). 

 
As relates to the RMLV, the logistics arena would be defined under the construct of 

“materiel” as dealing with all aspects of its life cycle from design to disposition. 
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  The airport concept of ground support provides further insight into the types of 

activities that will be the focus of this thesis.  Within the air transportation system, 

ground time “includes all processes and activities from wheels-on to wheels-off” 

(Andersson, 2006: 1).  These processes and activities are typically subcontracted to an 

airline, airport, or handling agent “to handle the many needs of passenger aircraft” 

including cabin service, catering, ramp service, maintenance and engineering service, and 

field operation service (Aircraft, 2007).  Subcontracted agencies, such as GAT Airline 

Ground Support and Airport Terminal Services (ATS) further define the scope of ground 

support within the specific services that they provide: cargo management, janitorial, 

cabin grooming, ground support equipment maintenance, facilities maintenance, Skycap 

and porter service, passenger check-in and ticketing, passenger boarding, VIP lounge 

staffing, baggage services and lost and found, aircraft loading and unloading, aircraft 

marshalling, aircraft pushback, aircraft fueling, aircraft deicing, warehouse receiving and 

delivery functions, document processing, and fuel farm management (Services, 2006; 

What We Do: Service, 2006).  While many of these functions are not directly applicable 

to the RMLV mission as currently defined, they do establish the comprehensive nature of 

ground support activities. 

 In previous AFIT research efforts, the MILEPOST model was developed to 

identify the regeneration activities required between subsequent RMLV launches.  These 

activities were broken into three phases—post-landing recovery, maintenance, and pre-

launch—and included such processes as towing, inspection and repair, fueling, and 

payload integration (Martindale, 2006; Pope, 2006; Stiegelmeier, 2006).  Thus, as defined 

by MILEPOST, the activities that require manpower resources for support encompass all 
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actions from touch-down to subsequent launch, and incorporate the maintenance aspect 

of military logistics with some handling aspects of ground support.  For the purpose of 

this thesis, logistics support, ground support, and regeneration support will be used 

interchangeably to indicate those activities identified in MILEPOST as being necessary 

to recover and subsequently launch an RMLV.  These activities will be covered in greater 

detail in Chapter III, Introduction to MILEPOST. 

Logistics Support AFSCs. 

Having determined the range of RMLV support activities that will be addressed in 

this thesis, the next portion of the research question addressed the capability of the 

current AFSC structure to support those activities.  AFSCs are governed by AF Officer 

and Enlisted Classification Directories, which are updated and published semi-annually 

(Air Force, AFMAN 36-2101, 2006: 55).  Of these available AFSCs, only certain 

classifications are considered Logisticians, who would directly be responsible for 

performing the logistics support activities defined in the previous section. 

The AF professional association for logistics officers, the Logistics Officers 

Association, defines logisticians as “key aircraft and munitions maintenance, logistics 

readiness, transportation, supply, contracting and logistics plans decision-makers” 

(Matthews, 2006).  The headquarters component for logistics support within the AF is the 

A4/7 Directorate, Logistics, Installations, and Mission Support, and encompasses six sub-

directorates including the offices of Transformation, Maintenance, Resource Integration, 

Logistics Readiness, the Civil Engineer, and Security Forces and Force Protection 

(Headquarters Air Force, 2006).  Within these organizations, the offices of 

Transformation and Resource Integration address strategic-level considerations for long-
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range planning (Headquarters Air Force, 2006).  The Directorates of Maintenance, 

Logistics Readiness, Civil Engineer, and Security Forces oversee functions that directly 

relate to aerospace platform operation and infrastructure (Headquarters Air Force, 2006).  

Since the focus of this research effort is on those activities directly supporting the RMLV 

from landing to subsequent takeoff, Civil Engineer and Security Forces personnel 

performing infrastructure support will not be addressed 

Thus, within the established AFSC structure, Maintenance and Logistics 

Readiness AFSCs will provide the basis for consideration for the RMLV logistics support 

workforce.  The specific AFSCs within these functions will be addressed in detail in 

Chapter V, Analysis of Required Technical Expertise. 

Organizational Structure 

 In order to accurately determine the logistics workforce characteristics for the 

RMLV, it is necessary to determine the manner in which the required technical experts 

will be organized.   

Organization Theory. 

 A formal organization arises out of the need to coordinate a group of people 

toward the “explicit purpose of achieving certain goals” (Blau, 2004: 1).  The 

organization will “formulate procedures that govern the relations among the 

members…and the duties each is expected to perform” and then tend to “assume an 

identity of its own” which enables it to “persist for several generations, not without 

change but without losing [its] fundamental identity as [a] distinct unit” (Blau, 2004: 1).  

If organizations will arise naturally out of the need to accomplish certain tasks, and if 

they will continue to support those tasks even as members and structures change, the 



 

24 

original definition of the structure is of great interest to the successful performance of the 

task over time.   

 Organizational structure “describes the division of work and the division of 

authority found in any organization” (Andersen, 2002: 344).  Organizations address 

division of work and authority in a variety of structures, each of which manifest varying 

degrees of specialization, centralization, and formalization.   

Specialization.   

Specialization, or complexity, describes the number, type, and location of 

specialties or departments within an organization (Andersen, 2002: 344).  The grouping 

of jobs, professions, and specialties into departments or workcenters is a critical aspect of 

forming an organization, and one of the most difficult aspects of this managerial decision 

is “whether to group activities primarily by product or by function” (Walker, 2005: 208).  

Product-oriented departments will incorporate all of the functional specialists needed for 

an individual product line while function-oriented departments will be composed of a 

single functional specialty supporting all product lines (Walker, 2005: 208).  This 

decision is a tradeoff, and the mission of the organization will play a role in determining 

which type of structure will provide the greatest overall benefit, and may result in the 

utilization of a mixed approach to address different activities within the organization.  For 

example, cross-functional (product-oriented) teams may be formed for certain projects 

that require a higher degree of coordination, while functional departments are sufficient 

for the development of standard products (Walker, 2005: 218).  In general, functional 

organizations are appropriate when tasks are routine and repetitive, integration can be 

achieved through a master plan, and conflict can be resolved through the established 
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management hierarchy (Walker, 2005: 217).  Product organization is more appropriate 

for tasks “of a problem-solving nature…especially…where there is a need for tight 

integration among specialists” (Walker, 2005: 217).  While RMLV development would 

be most appropriately supported by a product-oriented organization, the logistics ground 

support of the operational RMLV will most likely require a hybrid structure due to the 

repetitive nature of certain ground processes and the high degree of coordination required 

by activities like scheduling and quality control.  

Centralization.  

Centralization (or decentralization) describes the organizational location 

of decision-making capabilities.  An organization is highly centralized when decision-

making authority rests only at high levels of management; conversely, an organization is 

decentralized when decision-making authority is granted at the lowest possible 

hierarchical levels (Andersen, 2002: 345).  Decentralized decision-making, which 

includes the popular concept of empowerment, is often considered to reflect an 

“organization’s interest in employee-maintenance issues” and takes advantage of the 

capabilities of lower-level managers and employees (Osborn, 1980: 300).  Certainly, 

decentralization allows “each administrative unit [to] deal efficiently with its own sector” 

(March, 1993: 230), freeing upper level management to address more global corporate 

concerns.   

However, there is a price to decentralization, one that has been particularly 

noted within NASA as a consistent contributor to inefficiencies and even disasters in 

major programs.  NASA’s ten field centers have evolved into autonomous agencies, as 

reduced budgets have driven them to broaden competencies, form alliances with 
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Congressional delegations, and lobby for projects outside their traditional functional 

specialties in order to assure individual survival (Levine, 1992: 199).  The fragmented 

management structure has been identified as a contributing cause to the Challenger 

disaster, a source of serious inefficiencies during Space Station program development, 

and a compounding factor in the oversight that led to the inoperable primary mirror on 

the Hubble telescope (Levine, 1992: 201).  In the case of the Challenger, program 

managers for individual elements were overly concerned with accountability to their 

respective field centers, so that internal flight safety problems were not properly routed 

through the established Shuttle management system.  The Space Station program began 

with 107 missions, as each of the four field centers involved submitted individual 

requirements, and no centralized review process was established to coordinate them with 

one another or with NASA capabilities.  Finally, the initial measurement error that 

resulted in the Hubble mirror flaw was never double-checked throughout the course of 

development, in part due to a lack of funding; however, the other five Hubble instruments 

were protected from such detrimental cost-saving measures by independent principal 

investigators, based outside of NASA in universities, while NASA had sole responsibility 

for the mirrors (Levine, 1992: 201).  It is clear from these examples that reduced budgets 

have led to autonomy and competition among the NASA field centers, with damaging 

effects on key programs.  The decentralized system that has developed is not conducive 

to effective program management for such large-scale, complex projects as NASA 

typically handles.  It follows that centralization will be a critical issue during the 

development of the RMLV; as well, within the logistics support organization for the 
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operational RMLV, careful consideration of the degree of centralization will be critical to 

launch mission success.   

Formalization.   

Formalization describes the degree of standardization of tasks and 

procedures within the organization (Andersen, 2002: 344).  Bureaucracies are typically 

associated with a high degree of formalization, and have been criticized for their 

inflexibility and tendency toward mediocrity (Osborn, 1980: 276).  Large companies, 

however, typically benefit from formalization, which allows them to ensure consistency 

throughout the organization (Osborn, 1980: 339). 

The benefits of formalizing organizational procedures can be identified in 

specific arenas within aerospace organizations.  For example, the adoption of a robust 

Quality Management System like the AS9100 aerospace standard can “stabilize and 

standardize” organizations in an industry in which perceived reliability is critical and, 

when coupled with consistent adaptation to external market changes, can lead to 

sustainable organizational growth over time (West, 2005: 80-82).  In addition, the 

importance of learning from successes as well as mistakes in aerospace ventures has led 

NASA to adopt a formalized learning process, patterned after the military After Action 

Review (AAR) system (Rogers, 2006: 2).  By formalizing the procedures for reviewing 

and assessing activities at multiple stages in project development, the Goddard Space 

Flight Center hopes to support agency-wide improvements in learning and knowledge 

management to ensure future mission success (Rogers, 2006: 7).   

Beyond specific organizational benefits, however, the aerospace industry 

is required to conform to standardized requirements for the safety of its customers and the 
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general public.  The Federal Aviation Administration, whose mission is to provide the 

“safest, most efficient aerospace system in the world,” formalizes the tasks and 

procedures associated with aerospace activities by administering certification 

requirements for aircraft, airports and spaceports, pilots, and aircraft mechanics; 

operating a standardized air traffic control system for civil and military aircraft; and 

regulating noise and environmental effects of air traffic (What we do, 2007).  As such, a 

high degree of formalization in operational activities is established as an aerospace 

industry standard. 

AF Policy. 

 The RMLV is envisioned as an AF asset; therefore, the suitability of AF 

organizational structure policy to RMLV logistics support will be addressed next. 

  Specialization.   

One of the principles of AF organization is Functional Grouping, in which 

personnel that form a “logical, separable activity” report to a single supervisor (Air 

Force, AFI 38-101, 2006: 6).  These functional activities are primarily identified by an 

AF Specialty Code (AFSC), the “basic grouping of positions requiring similar skills and 

qualifications” (Air Force, AFMAN 36-2101, 2006: 52).  However, a Squadron, the AF’s 

most basic organizational unit, may be “either a mission unit, such as an operational 

flying squadron, or a functional unit, such as a civil engineer, security forces, or 

maintenance squadron” (Air Force, AFI 38-101, 2006: 12).  As such, the AF is a hybrid 

organization in which departments may be aligned around missions (products) or 

functions depending upon the operational requirements. 
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Specifically within the logistics community, the hybrid nature of the 

organization continues to apply.  Within a Maintenance Group, the Maintenance 

Squadron (MXS) (conducting backshop repair operations) is typically aligned 

functionally, consisting of “personnel from various AFSCs organized into flights” like 

propulsion, avionics, and fabrication (Air Force, AFI 21-101, 2006: 98).  However, the 

Aircraft Maintenance Squadrons (AMXS) (conducting flightline operations) and 

Maintenance Operations Squadron (MOS) may include many different functional 

specialists performing cross-functional activities like quality assurance, flightline 

expediting, and debriefing (Air Force, AFI 21-101, 2006: 70-166).  For example, the 

Specialist section within the AMXS is responsible for: 

troubleshooting, on-equipment repairs, component removal and 
replacement, aircraft avionics systems classified item management, and 
aircraft ground handling, servicing, and cleaning…[and] may include 
avionics, propulsion, hydraulics, and electro/environmental technicians 
(Air Force, AFI 21-101, 2006: 78). 

 
The Logistics Readiness Squadron is also organized primarily in a hybrid manner, with 

Materiel Management, Traffic Management, Vehicle Management, and Fuels 

Management Flights organized functionally by AFSC, while Readiness and Management 

& Systems Flights perform cross-functional duties and are manned by a variety of AFSCs 

(Air Mobility Command, AMCMD 716, 2004: 1).   

As regards the RMLV, this hybrid organizational structure provides a 

balance between the benefits of functional organization for repetitive tasks like engine 

maintenance or wheel and tire repair (MXS functions) and the advantage of cross-

functional teams to address objectives like quality assurance and expedited flightline 

operations (MOS and AMXS functions).   
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Centralization.   

Decentralization is established as a key characteristic of AF organizations, 

so that “lower echelons can achieve objectives without needing continuous control from 

above” (Air Force, AFPD 38-1, 1996: 1).  However, Unambiguous Command is an 

equally important characteristic, in which organizational structure provides a “clear 

chain-of-command running from the President to the most junior airman” (Air Force, 

AFPD 38-1, 1996: 1).  Essentially, the AF organization is tasked to strike a balance 

between empowerment of lower-level managers for operational decision-making and a 

centralized management structure for oversight and conflict resolution.  This balanced 

approach provides exactly the type of support structure that can maximize the benefits of 

decentralization and avoid the consequences of fragmentation experienced at NASA. 

Formalization.   

Another key characteristic of AF organizations is Standardization, which 

stipulates that organizations “with like responsibilities should have similar organizational 

structures” (Air Force, AFPD 38-1, 1996: 1).  Additionally, each of the Organizational 

Entities available to form a structure is defined in detail, so that even organizations with 

different missions will be composed using Standard Levels of AF organization (Air 

Force, AFI 38-101, 2006: 10).  The result is that all AF organizations are composed of 

Major Commands (MAJCOMs), of which most are composed of Wings, made up of 

Squadrons, broken down into Flights.  This constitutes a high degree of formalization 

within the formation of the organizational structure itself.   

AF logistics tasks and procedures are highly formalized, as well, governed 

by AF Instructions, Technical Orders (TOs), and checklists.  For example, procedures for 
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issuing and managing spare parts are governed by Air Force Manual 23-110, USAF 

Supply Manual; aircraft refueling operations are regulated by Air Force Instruction 23-

201, Fuels Management, and applicable TOs; and aircraft maintenance operations fall 

under Air Force Instruction 21-101, Aircraft and Equipment Maintenance Management, 

which also mandates strict “adherence to and compliance with TOs and supplements” for 

all aircraft and equipment (Air Force, AFI 21-101, 2006: 18). 

 This type of procedural standardization is consistent with FAA 

requirements to ensure the safety of aerospace activities.  The establishment of a logistics 

support organization with this degree of formalization will be of great benefit to the safe 

operation of the RMLV. 

In summary, the AF principles for establishing organizational structure provide a 

balanced approach to specialization and centralization, and high degree of formalization.  

Organizational behavior literature and specific examples from the aerospace industry 

support these approaches as effective within the aerospace context.  Therefore, the 

current AF organizational structure provides a suitable framework for developing the 

RMLV logistics support organization, which will be addressed in detail in Chapter VI, 

Analysis of Organizational Structure.     

Developing Manpower Requirements 

 Having established AF policy as the standard for developing organizational 

structure, AF policy also provides the foundation for establishing the manpower 

requirements of the RMLV logistics support organization. 

 The method for determining AF manpower requirements is clearly established 

within the governance of Air Force Instruction 38-201, Determining Manpower 
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Requirements.  The goal of AF manpower requirements determination is to 

“systematically identif[y] minimum essential manpower required for the most effective 

and economical accomplishment of approved missions and functions within 

organizational and resource constraints” (Air Force, AFI 38-201, 2003: 5).  In order to 

accomplish this goal, the AF has established Management Engineering Programs which 

form the basis for the development of manpower standards and conduct of manpower 

studies (Air Force, AFI 38-201, 2003: 5).  Under this construct, all AF units adhere to a 

standardized process of determining manpower requirements.  The manpower 

determination process begins with the development of an AF Manpower Standard 

(AFMS) for the unit of interest, which considers the product or service provided by the 

unit, the quantity or frequency of the workload, product/service prioritization, any 

variations to basic requirements, and a detailed breakdown of required grades, skill 

levels, and officer-enlisted-civilian mix in order to generate a total man-hour requirement 

(Air Force, AFI 38-201, 2003: 10).  AFMS total man-hour requirements are divided by a 

Man-hour Availability Factor (MAF), reflecting the percentage of work-hours per month 

an individual is available to perform primary duties, and an Overload Factor, which 

“ensures effective use of Air Force manpower resources” by assessing different 

percentages of overload capacity to different duty scenarios, in order to determine the 

authorized number of manpower positions (Air Force, AFI 38-201, 2003: 13-14).   

 Certain units may determine Aircraft Maintenance manpower requirements 

through the use of “aircraft specific maintenance man-hour per flying hour (MMH/FH) 

factors when more rigorous methods (i.e., conventional manpower standards or Logistics 

Composite Model manpower determinants) are not available” (Air Force, AFI 38-201, 
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2003: 16).  For instance, in some cases, the small number or impending retirement of 

certain airframes render rigorous manpower studies non-cost effective and justify the use 

of MMH/FH data instead.   

 Additionally, the AFI endorses the use of the Logistics Composite Model 

(LCOM), a “dynamic computer simulation model that evaluates the interaction between 

operations and logistics” (Air Force, AFI 38-201, 2003: 18).  Guidance for conducting an 

LCOM study is contained in Air Force Manual 38-208, Volume 3, Air Force 

Management Engineering Program (MEP)—Logistics Composite Model (LCOM).  

LCOM is designed to provide an assessment of the “best mix [of different support 

resources] to support a given requirement,” and may be applied to a range of weapons 

systems, from the very large to the very small (Air Force, AFMAN 38-208, 1995: 1).  

LCOM outputs are based on a specific scenario which includes detailed operational and 

maintenance data, including: operational environment, primary aircraft assigned, 

organizational structure with workcenter functional account codes, MAFs, shift data, not-

mission-capable supply rates, maintenance policy, failure data, and sortie rates (Air 

Force, AFMAN 38-208, 1995: 2-3).  Maintenance data, specifically, should ideally 

consist of “at least six months of historical data from the units or locations under study” 

(Air Force, AFMAN 38-208, 1995: 4).  LCOM simulation is an approved manpower-

determination method even for “evolving weapons systems” (Air Force, AFI 38-201, 

2003: 18); however, the lack of a directly-comparable existing platform within the AF 

inventory (or the commercial sector) may initially impose significant challenges to 

establishing a successful LCOM simulation for the RMLV.  Still, the process through 

which the LCOM simulation assigns aircraft support resources to operational 
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requirements will be relevant to accomplishing a similar function within MILEPOST, 

until such time as sufficient data is amassed for an LCOM simulation.  This functionality 

is addressed in greater detail in Chapter VIII, Conclusions and Future Research. 

 In summary, while the preferred method to exactly establish RMLV manpower 

requirements begins with an LCOM simulation study, there is a challenging lack of data 

availability, particularly in the realm of historical maintenance data.  A secondary method 

involves applying existing AFMS documents, but this method will face additional 

challenges in adapting those AFMS assumptions to the specific nature of RMLV support 

requirements.  Utilizing MMH/FH factors would likely be acceptable due to small fleet 

size; however, again, there is a lack of platform-specific data to establish these factors.  

Therefore, in Chapter VII, Manpower Assessment, data from all available areas will be 

investigated to derive the most realistic manpower requirements assessment from a 

combination of AF methods. 

Life Cycle Costing 

 Finally, Department of Defense policy will also be applied to determine how to 

address the Life Cycle Cost implications of logistics support to the RMLV fleet.   

 RMLV development will be considered a “major defense acquisition program” 

and, as such, falls under the review responsibility of the Cost Analysis Improvement 

Group (CAIG).  The CAIG receives a “comprehensive assessment of program Lifecycle 

cost” at each major milestone decision point from the Office of the Secretary of Defense 

(OSD) CAIG (Defense Acquisition Guidebook, 2006: 3.4-3.4.1).  The OSD CAIG 

assessment contains both the program office’s estimate of total life cycle cost and the cost 

analysis of each relevant DoD component (Defense Acquisition Guidebook, 2006: 3.4.1). 
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 Program costs are divided into seven standardized categories:  Development Cost, 

Flyaway Cost, Weapon System Cost, Procurement Cost, Program Acquisition Cost, 

Operating and Support (O&S) Cost, and Life Cycle Cost.  Each of these cost terms is 

defined in relation to the elements of the Work Breakdown Structure (WBS), the source 

of budget appropriations, and the life-cycle cost categories included (Department of 

Defense, DoD 5000.4-M, 1992: 44).  The life-cycle cost categories define whether the 

cost term is contractor or in-house, recurring or nonrecurring, and whether it is relevant to  

the Research and Development (R&D), Investment, or O&S phases of the program life  

cycle, as depicted in Table 2: 

Table 2.  Life Cycle Costs (Department of Defense, DoD 5000.4-M, 1992: 50) 
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Life Cycle Cost, shown across the bottom row, includes “ALL WBS elements; ALL 

affected appropriations; and encompasses the costs, both contractor and in house effort, 

as well as existing assets to be used, for all cost categories” (Department of Defense, 

DoD 5000.4-M, 1992: 49).  As such, it is the total program cost to the government over 

the entire life cycle of the system, from research to disposal.  The Life Cycle Cost of a 

program under consideration is assessed early in the life of the project, and continuously 

reassessed throughout. 

The cost assessment process is highly structured.  First, the acquisition program 

office is responsible for preparing a Cost Analysis Requirements Description (CARD) 

describing the “salient features of the program and of the system being acquired…as a 

basis for cost-estimating” (Department of Defense, DoD 5000.4-M, 1992: 8).  The CARD 

follows a standardized outline addressing 12 aspects of the program:  System Overview, 

Risk, System Operational Concept, Quantity Requirements, System Manpower 

Requirements, System Activity Rates, System Milestone Schedule, Acquisition Plan 

and/or Strategy, System Development Plan, Element Facilities Requirements, Track to 

Prior CARD, and Contractor Cost Data Reporting Plan (Department of Defense, DoD 

5000.4-M, 1992: 10-20).  Within these 12 aspects, several sub-categories are of interest 

from the logistics support perspective:  Reliability; Maintainability, including 

maintenance man-hours per operating hour and personnel requirements and associated 

skill levels at the maintenance unit level; Portability and Transportability and their effect 

on logistics support requirements; Organizational Structure including a UMD, notional, if 

necessary; Logistics Support Concept, including organic versus contractor, scheduled 

maintenance and overhaul points, maintenance levels and repair responsibilities, and 
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repair versus replacement criteria; Supply; Training for operators, maintainers, and 

support personnel; and System Manpower Requirements (Department of Defense, DoD 

5000.4-M: 14-18).   

Second, cost estimates are developed by the program office and DoD component, 

as applicable, in accordance with standardized estimation practices.  Cost estimates are 

required to capture “all sunk costs and a projection for all categories of the life-cycle 

costs for the total planned program” to include: R&D, Investment, and O&S (Department 

of Defense, DoD 5000.4-M, 1992: 29-30).  Statistical Estimates, Engineering and 

Analogy Estimates, and Actual Costs will be utilized as practical for the program 

milestone.  For example, Actual Costs will not be available in the early phases of the 

program, during which estimates will rely more heavily on statistical techniques 

(Department of Defense, DoD 5000.4-M, 31-32).  Comparison of multiple methods is 

encouraged, and the estimate should identify and quantify uncertainty, address 

contingencies, and include sensitivity analysis (Department of Defense, DoD 5000.4-M, 

33). 

The CARD, program office estimate, and DoD component cost analysis for each 

alternative under consideration are presented for review and revision to the OSD CAIG 

upon the approach of major milestone decisions (Department of Defense, DoD 5000.4-M, 

1992: 28-29).  The presentation format is also highly structured, including the following 

elements:  Overview, Alternative Descriptions, Program Manager Presentation, 

Presentation of the DoD Component Cost Analysis, Present Value of Alternatives, 

Preferred Alternative, Time-Phased Program Estimates, Estimate Detail, Relation to 

FYDP, Cost Estimating Relationship Presentation, Contractor Cost Data Reporting 
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Status, Cost Track, Unit Cost Comparisons, Design-to-Cost, Personnel Requirements, 

and O&S Comparisons of alternatives to include fuel, crew size, maintenance man-hours 

per operating hour, manpower requirements by skill-level, and annual O&S costs for the 

required force structure unit (Department of Defense, DoD 5000.4-M, 1992: 34-36).  

These last two presentation elements reinforce the importance of logistics support 

manpower requirements throughout the course of program development. 

The OSD CAIG then presents the CARD, the estimates, and supporting 

documentation to the CAIG, who will provide a final report on the program to the 

Defense Acquisition Board. 

 While a comprehensive cost estimate in accordance with DoD policy is outside 

the scope of this thesis, certain elements of the Life Cycle Cost estimate will be addressed 

in response to the fourth research question.  Chapter VIII, Conclusions and Future 

Research, will include an assessment of the costs of logistics support Personnel 

Requirements and Training to the maximum degree possible. 

Summary 

 In summary, a thorough literature review has established the importance of 

defining logistics manpower support requirements early in the development of the 

RMLV.  Logistics manpower support will be assessed based on the regeneration 

activities identified in MILEPOST, and will be supported from within the Maintenance, 

Logistics Readiness, Civil Engineer, and Security Forces functions under the existing 

AFSC structure.  The RMLV organizational structure will be determined in accordance 

with AF organizational development policy.  Manpower requirements will, likewise, be 

assessed in accordance with AF policy.  Finally, Life Cycle Cost implications will be 
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addressed in accordance with DoD guidance. Chapter IV, Methodology, will specifically 

address the research methods that will be utilized within each of these research areas.  

First, however, a more thorough introduction to the MILEPOST model that forms the 

foundation for this research will be provided in the following chapter. 

 



 

40 

 

III.  Introduction to MILEPOST 

The MILEPOST model is composed of three independently-developed, sequential 

processes that are linked within the Arena construct to provide a timeline of all the 

activities that occur from RMLV landing until the pre-launch sequence for its subsequent 

mission.  In this section, we will review each segment of the regeneration process.  This 

process, along with the activities identified therein, forms the foundation for assigning 

workforce requirements in support of the RMLV.  

Part 1: Post-Landing Operations 

 The activities identified in this portion of the model were developed based on a 

comparison of Space Shuttle Orbiter and F-16 post-landing recovery operations.  The 

results of the comparison showed that the Orbiter required four processes that are not 

performed on the F-16.  Of the remaining processes, some of the simpler activities were 

held in common; however, a greater number of activities shared a common purpose, but 

involved much greater complexity and longer completion times for the Shuttle 

(Martindale, 2006: 17).  This implies that the AF will experience a few shortfalls in 

expertise for RMLV ground support; will have sufficient expertise for some activities; 

and will have sufficient technical background, but require additional training, for a 

greater number of support activities.  Following is a by-segment assessment of the Post-

Landing Operations portion of the MILEPOST model.  

Segment 1, Landing, Taxi, and Initial Safing, is shown in Figure 4.  This process 

segment addresses the RMLV landing, travel to the recovery apron, and various initial 

safing procedures for the ground support crew.  It incorporates elements of both aircraft 
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and Shuttle Recovery operations.  A vehicle that can taxi to the recovery apron is aircraft-

like, and APU shutdown procedures are common to all airframes.  However, the Ground 

Support Equipment (GSE) positioned for the vehicle, the drag chute pyrotechnic safing, 

and the LOX safing operations are derived from Shuttle recovery procedures (Martindale, 

2006: 32). 

 

Figure 4.  Landing, Taxi, and Initial Safing (Martindale, 2006: 32) 

Segment 2, Safety Assessment and Final Safety Call, is depicted in Figure 5.  This 

segment deals with ensuring that the RMLV is safe for the ground crews to perform 

recovery operations and transport the vehicle to the maintenance facility.  The specialties 

required for this segment of the process depend upon whether the RMLV design is fueled 

by hypergolics and whether an RMLV that does require hypergolic fuel includes internal 

gas detection equipment.  If there are no hypergolic fuels involved, or once the vehicle 

passes its safety inspection, the rest of the recovery operation can proceed (Martindale, 

2006: 32). 

 

Figure 5.  Safety Assessment and Final Safety Call (Martindale, 2006: 32) 
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Segment 3, RMLV Preparation for Transportation, is shown in Figure 6.  This 

segment begins the actions required to prepare the RMLV for transportation to a 

maintenance facility.  It includes several processes that occur in parallel, including the 

hazardous gas purge, external coolant requirement, and TPS inspection required in 

Shuttle operations.  Installing lock pins and protective covers for vents are common 

actions for a variety of aircraft (Martindale, 2006: 34). 

 

Figure 6.  RMLV Preparation for Transportation (Martindale, 2006: 34) 

Segment 4, Handling External Stores, is depicted in Figure 7.  The model 

accounts for the possibility that the RMLV may be designed with the capability to land  

with external stores attached.  This portion of the model is best represented by fighter or  
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bomber aircraft that land with unexpended ordnance (Martindale, 2006: 35). 

 

Figure 7.  Handling External Stores (Martindale, 2006: 35) 

Segment 5, Safing Sequence, which is shown in Figure 8, addresses the final 

safing procedures prior to towing operations.  While the Orbital Maneuvering System/ 

Reaction Control System (OMS/RCS), Main Engine (ME) Tank Venting, and hypergolic 

fuel process requirements are unique to spacecraft, propulsion system configuration and 

Inertial Navigation System (INS) safing are common practices to aircraft (Martindale, 

2006: 36). 

 

Figure 8.  Safing Sequence (Martindale, 2006: 36) 

Segment 6, depicting Part 2 of RMLV Preparation for Transportation operations, 

is shown in Figure 9.  The second stage of preparation occurs at the same time as the 

safing sequence described above.  In this process the recovery team installs protective 

covers on equipment as necessary, positions the tow vehicle, and monitors on-board 
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systems.  These actions were modeled on Shuttle recovery operations, but the basic 

processes are consistent with operations performed by aircraft maintenance personnel 

(Martindale, 2006: 37). 

 

Figure 9.  RMLV Preparation for Transportation, Part 2 (Martindale, 2006: 37) 

Segment 7, Tow Preparations and Towing to the Maintenance Facility, is shown 

in Figure 10.  Final tow preparations also occur in parallel with the safing sequence, and 

include standard airframe actions like connecting the tow vehicle, checking connections, 

and removing chocks (Martindale, 2006: 37).  Towing is the final action within Post-

Landing Operations, after which the entity in the model is transitioned into Ground 

Maintenance Operations (Martindale, 2006: 38). 

 

Figure 10.  Tow Preparations and Towing to Maintenance Facility (Martindale, 2006: 38) 
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Because the RMLV launch and reentry patterns are most similar to those of the 

Space Shuttle Orbiter, it was the primary source of activities in the Post-Landing 

Operations phase.  As we have seen in each segment, however, many of the activities 

contained within the processes are similar to activities performed after an aircraft landing.  

These similarities will be examined in greater detail in Chapter V, Analysis of Technical 

Expertise. 

Part 2: Ground Maintenance Operations Cycle 

 The Ground Maintenance Operations Cycle is the portion of the model that most 

closely relates to aircraft support operations, simply because the design of a spacecraft 

includes the same major components as the design of an aircraft: fuel systems, hydraulic 

systems, propulsion systems, electrical and environmental systems, and structural 

systems.  Maintenance of unique systems like the Thermal Protection System (TPS) may 

be compared to maintaining the specialized surface material applied to the B-2.  Bomber 

aircraft exhibit more similarities to Shuttle maintenance than fighter aircraft, as the larger 

size and greater complexity of the platform require a higher degree of maintenance 

interaction between missions (Pope, 2006: 15).  In general, the B-2 provides a strong 

source for model development due to its mission, maintenance footprint, and specialized 

structural material (Pope, 2006: 17).  Key differences identified between Shuttle and B-2 

maintenance operations include the even larger size and greater complexity of the 

Shuttle; performance of Shuttle refueling operations immediately prior to launch rather 

than as part of ground maintenance operations; and more frequent landing gear and tire 

replacement maintenance actions due to the Shuttle’s higher landing speeds and fewer, 

lighter tires (Pope, 2006: 15). 
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 Segment 1, Transportation to Maintenance Bay, is depicted by Figure 11.  In this 

portion of the model, the vehicle is transitioned via the towing operation established in 

Post-Landing Operations.  For the maintenance activities to follow, this segment allows 

the user to define the number of engines on the RMLV.  The remaining operations result 

in the RMLV being positioned in the maintenance bay, ready for assessment and repair 

actions (Pope, 2006: 26). 

 

Figure 11.  Transportation to Maintenance Bay (Pope, 2006: 26) 

Segment 2, Initial Maintenance Assessment, is shown in Figure 12 below.  The 

first step in RMLV maintenance is to download information from the Integrated Vehicle 

Health Monitoring (IVHM) system.  If IVHM is not part of the RMLV design, 

maintenance personnel will have to perform system health assessments through other 

means.  Afterwards, maintenance stands are positioned and electrical connections are 

established to provide power as required to various on-board systems.  After performance 

of these actions, the model allows for a series of maintenance actions performed in 

parallel, beginning with battery testing (Pope, 2006: 27). 

 

Figure 12.  Initial Maintenance Assessment (Pope, 2006: 27) 
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Segment 3, Avionics, Flight Controls, and Sensors, is modeled in Figure 13.  This 

segment occurs in parallel with battery testing.  Maintenance personnel test the avionics 

equipment to ensure that it is communicating properly and properly controlling the flight 

surfaces.  At the same time, the lower module “allows for the removal of experimental 

data or telemetry information” collected by on-board sensors (Pope, 2006: 28). 

 

Figure 13.  Avionics, Flight Controls, and Sensors (Pope, 2006: 28) 

Segment 4, shown in Figure 14, addresses Second Stage Connection Testing.  

After completion of Segments 2 and 3, maintenance personnel test the RMLV electrical 

connections for the second stage, after which the vehicle enters a series of parallel 

processes (Pope, 2006: 29). 

 

Figure 14.  Second Stage Connection Testing (Pope, 2006: 29) 

Segment 5 initiates a set of Parallel Processes, shown in Figure 15.  This segment 

involves drag chute replacement, TPS inspection and repair actions, Stage 2 mechanical 

and hardware component assessment, and removal/replacement (R2) of the buffer plug  
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which “offers a secure connection that allows for separation between two vehicles in 

motion” (Pope, 2006: 29). 

 

Figure 15.  Parallel Processes (Pope, 2006: 29) 

Segment 6 is a continuation of those Parallel Processes, as shown in Figure 16.  

To complete the processes initiated above, RMLV mechanics will continue TPS repair 

activities while fluid systems are being assessed and repaired as necessary.  Because 

maintenance repair access requires the removal of TPS tiles, the RMLV undergoes a full 

systems check prior to TPS waterproofing.  On the bottom branch, the RMLV enters the 

engine repair process.  As each engine is assessed and/or repaired, the Number of Motors 

module will be increased; the RMLV will exit the cycle when the count is equal to the 

total number of engines assigned prior to the start of Ground Maintenance Operations 

(Pope, 2006: 31).   

 

Figure 16.  Parallel Processes, Continued (Pope, 2006: 29) 
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Segment 7, Engine Maintenance, is depicted in Figure 17.  “One aspect of the 

launch vehicle that will differ from aircraft maintenance is the fact that the engine will 

require certain tasks to be performed after every flight” (Pope, 2006: 31).  However, 

these maintenance repair actions are performed in parallel with TPS, avionics, and fluids 

actions, reducing the overall maintenance time.  A design including modular motors that 

can simply be removed and replaced would further reduce overall maintenance time.   

 

Figure 17.  Engine Maintenance (Pope, 2006: 31) 

Engine Maintenance operations are continued in Segment 8, shown in Figure 18.  

This section of the model completes engine diagnostics and repair.  Segments 7 and 8 are 

repeated for each engine (Pope, 2006: 33). 

 

Figure 18.  Engine Maintenance, Continued (Pope, 2006: 33) 

Segment 9, modeling Maintenance Completion, is shown in Figure 19.  The final 

segment of the Ground Maintenance Operations Cycle brings together all of the parallel 

processes that have been performed in the maintenance bay.  It culminates in the 

completion of TPS waterproofing and engine maintenance while preplanned 

maintenance, Time Compliance Technical Order (TCTO) actions, and landing gear and 
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tire maintenance are completed in parallel.  The final action is an engine check which, if 

good, routes the RMLV to Pre-launch Operations (Pope, 2006: 34). 

 

 

Figure 19.  Maintenance Completion (Pope, 2006: 34) 

RMLV ground maintenance operations exhibit many similarities to aircraft 

maintenance operations.  The primary differences between the two processes are the 

complexity and completion time of certain activities and the requirement for more 

extensive maintenance between each flight in areas such as the engines and landing gear.  

This implies that while an RMLV maintenance workforce may be larger than an aircraft 

maintenance workforce, it will not differ significantly in its composition of technical 

expertise. 

Part 3: Pre-launch Operations 

  RMLV pre-launch operations contain the highest degree of variability within the 

model.  Because the RMLV design concept is not yet solidified, Stiegelmeier had to 

account for many potential pre-launch scenarios based on a variety of existing platforms.  

These scenarios include horizontal or vertical integration of the three stages, pre-

integration of the first and second stages, pre-integration of the second stage and payload, 

and integration occurring on or off of the launch pad.  Models for each of these scenarios 

Waterproof TPS

     0
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were drawn from the Shuttle, aircraft, Atlas V, Delta IV, Zenit 3SL, and ICBM 

operations (Stiegelmeier, 2006: 26).  This set of processes differs most significantly from 

standard aircraft operations, but still incorporates skill sets that are available in today’s 

AF manpower structure. 

 Segment 1, Pre-integration of Second Stage and Payload, is shown in Figure 20.  

The first determination, which occurs simultaneously with ground maintenance 

operations, is whether pre-integration of the second stage and payload will occur 

(Stiegelmeier, 2006: 63).  These operations require support personnel using specialized 

GSE to secure the payload, align it with the second stage, and make all mechanical and 

electrical connections.  Although the pre-integration concept is modeled on the Shuttle 

pre-integration of boosters and external tanks (Stiegelmeier, 2006: 70), this process is 

similar to loading external munitions on aircraft. 

 

Figure 20.  Pre-integration of Second Stage and Payload (Stiegelmeier, 2006: 70) 
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Segment 2, Vehicle Integration Preliminary Considerations, is shown in Figure 

21.  This segment depicts three possible vehicle integration scenarios: integration on the 

launch pad, integration in the maintenance or storage facility, or integration in a separate 

facility (Stiegelmeier, 2006: 64).  On-pad integration is modeled on Expendable Launch 

Vehicle operations, while off-pad integration scenarios are based on the Atlas V and 

Delta IV Evolved Expendable Launch Vehicles (Stiegelmeier, 2006: 70).  This segment 

is primarily composed of decision modules and will only require manpower if the vehicle 

must be transported to the launch pad or integration facility. 

 

Figure 21.  Vehicle Integration Preliminary Considerations (Stiegelmeier, 2006: 70) 

Segment 3, shown in Figure 22, addresses operations required for Vehicle 

Integration, Integrate on Pad.  The upper branch represents a payload previously 

integrated to the second stage, while the lower branch depicts a sequential integration of 

all three stages (Stiegelmeier, 2006: 65).  As in Segment 1, the positioning, alignment,  
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and connection of each of stage are similar to (though more complex than) loading 

aircraft ordnance.  

 

Figure 22.  Vehicle Integration, Integrate on Pad (Stiegelmeier, 2006: 65) 

Segment 4, addressing the modeled option for Vehicle Integration, Integrate off 

Pad, is shown in Figure 23.  This portion of the model, in which vehicle integration 

occurs at a facility away from the launch pad, includes a long series of processes 

depending upon how many and what type of integration actions are required 

(Stiegelmeier, 2006: 66).  It accounts for pre-integration, vertical or horizontal, on the 

upper branch, or sequential integration, vertical or horizontal, on the second branch.  

Atlas V provided the model for vertical integration activities, while Delta IV and Zenit 

3SL were referenced for horizontal integration (Stiegelmeier, 2006: 71).  After each stage 

integration action, electrical and mechanical connection checks are required, culminating 

with an entire vehicle check.  Once stages are mated, this portion of the model depicts the 

capability to load the payload, hypergolic fuel, and/or ordnance in the integration facility 

or on the launch pad (Stiegelmeier, 2006: 66).  The activities within the integration  
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process, regardless of the design alternatives, will require personnel with loading 

expertise as discussed in Segments 1 and 3 as well as fueling expertise. 

 

Figure 23.  Vehicle Integration, Integrate off Pad (Stiegelmeier, 2006: 66) 

Segment 5 depicts Launch Pad Operations for Vehicle not Integrated on Pad, and 

is shown in Figure 24.  The upper branch is based on the Zenit program and represents an 

RMLV that is transported to the launch pad horizontally on GSE that includes the vehicle 
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erector mechanism (Stiegelmeier, 2006: 71).  The lower branch depicts a vehicle that is 

transported to the pad in a vertical orientation, like the Shuttle, and accounts for the 

possibility of payload integration on the launch pad (Stiegelmeier, 2006: 67).  The 

primary activities during this process are the operation GSE and integration of the 

payload, if necessary. 

 

Figure 24.  Launch Pad Operations for Vehicle not Integrated on Pad  
(Stiegelmeier, 2006: 67) 

 
Segment 6, Launch Pad Operations, is depicted in Figure 25.  In this segment, 

ground support personnel make umbilical connections to the RMLV as required, based 

on the design configurations of the Shuttle, Atlas V, and Zenit programs, respectively 

(Stiegelmeier, 2006: 71).  The model then allows alternative paths based on the use of 

hypergolic fuels and RP-1 in each of the first and second stages, as well as the ability to 
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conduct parallel fueling operations (Stiegelmeier, 2006: 68).  Cryogenic fueling 

operations are represented in the next, and final, segment. 

 

Figure 25.  Launch Pad Operations (Stiegelmeier, 2006: 68) 

Finally, Segment 7, Propellant Loading, is depicted in Figure 26.  This segment is 

the final operation prior to launch and depicts the loading of cryogenic fuels, if required, 

via three alternatives: stages loaded in parallel, oxidizer and fuel loaded in parallel (Box 

1); stages loaded in parallel, oxidizer and fuel loaded sequentially (Box 2); or stages 

loaded sequentially with fuel and oxidizer loaded sequentially (Box 3) (Stiegelmeier, 

2006: 69).  The fueling activities depicted in Segments 7 and 8 have some degree of 
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similarity to aircraft fueling operations; however, this model depicts a much more 

complicated array of fueling possibilities, and the design alternatives will dictate the 

amount of additional training needed in the aircraft fuel workforce. 

 

Figure 26.  Propellant Loading (Stiegelmeier, 2006: 69) 

Summary 

 The MILEPOST model diagrams the series of activities required to recover, 

maintain, and prepare an RMLV for launch.  As such, it provides the foundation for 

ground support requirements that must be upheld by the RMLV logistics workforce.  In 

this segment-by-segment review of the model, we have identified the ways in which 

RMLV operations differ from aircraft operations in order to gain preliminary 
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understanding of the AF manpower structure’s ability to support this vehicle.  Chapter 

VI, Analysis of Organizational Structure, will further assess the type of AF organization 

that would best support the mission sequence defined by the model, while Chapter V, 

Analysis of Required Technical Expertise, will examine in greater detail the relationship 

between current AFSCs and the activities defined by the model. 
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IV. Methodology 

 This research effort was primarily a qualitative study, an effort to “answer 

questions about the complex nature” of providing logistics support to a newly-emerging 

space launch platform (Leedy, 2005: 94).  As such, the research process exhibited the 

following characteristics: 

Purpose: The purpose of the research effort was to gain a greater understanding of 

the logistics ground support implications of the RMLV.  Research was exploratory in 

nature, and research and observations throughout the research period were used to 

develop a workforce projection by synthesizing information from comparable sources. 

Process: Throughout the research process, research focus and research and 

analysis methods evolved as a more complete understanding of RMLV support 

requirements and logistics implications was developed. 

Data Collection: Logistics support requirements can only be “easily divided into 

discrete, measurable variables” (Leedy, 2005: 96) based upon historical data for a 

platform.  Since this type of data was not available for the RMLV, data was collected 

from previous research efforts, AF and DoD policy, and historical data from comparable 

platforms, focusing on gaining increased insight from these sources rather than trying to 

collect quantitative data from a sample. 

Data Analysis: The data analysis method in this study was partially subjective in 

nature, relying on inductive reasoning and synthesis to gather many specific observations 

from aircraft, EELV, ICBM, and Shuttle operations that led to inferences about the 

logistics support structure for the RMLV (Leedy, 2005: 95-96).  However, manpower 
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analysis also utilized a designed experiment approach to assessing the impact of 

individual factors on logistics manpower.  This approach is described in greater detail in 

the Data Collection and Analysis Strategies section of this chapter. 

 The research method selected for this thesis, described in the following section, 

was uniquely tailored to the objective of determining the logistics ground support 

workforce for an RMLV fleet, and provided a solid analytical framework for conducting 

a thorough qualitative study. 

An Analytical Framework for Projecting an RMLV Ground Support Workforce 

The RMLV will be an AF asset and, as such, the support organization for the 

vehicle was developed in accordance with AF policy as defined by AF Policy Document 

38-2, Manpower, and AF Instruction 38-201, Determining Manpower Requirements.  The 

purpose of the guidance outlined in these documents is to ensure that AF units 

“successfully accomplish assigned missions using [the] minimum levels of manpower 

needed to effectively and efficiently execute missions” (Air Force, AFPD 38-2, 1995: 1).  

AFI 38-201 provided a step-by-step process by which to determine unit manpower 

requirements under this construct.  These instructions, therefore, provided the analytical 

framework for this research project. 

Identifying the Requirements. 

 The AF manpower requirements determination process begins with a well-defined 

mission requirement.  This research began with a comparison of the MILEPOST model 

to the current AFSC structure in order to fully describe the RMLV support requirements 

and determine the capability of existing AFSCs to perform support operations.  This 
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enabled the selection of an appropriate manpower standard or alternate method of 

manpower requirements calculation in later steps of the research process. 

Identifying the Organizational Structure. 

 The AF requires that “[o]rganizations with like responsibilities should have 

similar organizational structures” (Air Force, AFPD 38-1, 1996: 2.7).  Based on the 

RMLV mission statement defined in Chapter I, Introduction, the research proceeded to 

determine the most appropriate AF organizational structure for an RMLV unit by 

comparing the RMLV mission to other AF organizational missions to discover the most 

appropriate structure for the new vehicle.  This information also contributed to the 

selection of the most appropriate method of manpower requirements determination. 

Determining the Manpower Requirements. 

 Methods of determining manpower requirements are established in AFI 38-201, 

Determining Manpower Requirements.  These methods were explored, assessed, and 

applied in the next phase of research in order to staff the organization created in the 

previous section. 

Assessing Life Cycle Cost and Training Implications. 

 Due to the unique nature of the RMLV, there may be ground logistics support 

shortfalls in the technical expertise of the current AF manpower pool.  The final stage of 

this research addressed the training requirements and estimated life cycle costs generated 

by the manpower determination formed in the previous section. 

Data Collection and Analysis Strategies 

Initial data collection relied heavily upon the MILEPOST model and the 

developers’ sources of RMLV information.  To complete Step 1 in the research method, 
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MILEPOST activities were compared to AF manpower resources as defined by AF 

guidance, developing a matrix assigning applicable AFSCs to each activity.  For the 

purpose of projecting how AF manpower support may develop in response to the 

introduction of a new weapons system into the AF inventory, supplemental data was 

collected from observations during a tour of the B-2 maintenance facility and historical 

information on the development of the B-2 logistics support structure.   

Data for the assessment of organizational structure was collected for agencies of 

interest primarily from their homepages or from the AF Portal.  Organizational structure 

information was collected only from AF organizations because the RMLV unit will need 

to be organized in accordance with current AF policy.   

In order to determine manpower requirements, procedural guidance was provided 

by the AF Materiel Command manpower office to determine the best method to project 

manpower requirements for the RMLV.  Input data for the manpower numbers 

themselves was based on a synthesis of maintenance man-hour and other logistics support 

data from aircraft, ELVs and EELVs, the Shuttle, and ICBMs, as applicable, to maintain 

consistency with the MILEPOST model.  As factors affecting manpower numbers were 

identified, they were assigned to a designed experiment where the response variable, Y, 

represents manpower and the total number of factors, k, are represented by individual 

variables, Xk.  The generalized form of the experiment design is depicted in Table 3. 

Table 3.  Design of Experiment 

Design Factors 
Point X1 X2 X3 

1 0 0 1 
2 0 1 1 
3 1 0 0 
4 1 1 0 

5 1 1 1 
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Factors are identified in Chapter VII, Manpower Assessment, and combinations of 

factors were sampled methodically to avoid the pitfall of “investigation of a handful of 

design points where many factors change simultaneously” (Sanchez, 2005: 71).  This 

research assumed that there were no interactions among factors. 

Finally, in evaluating training requirements and life cycle cost implications, 

historical data was collected from AF ground support training methods for new aircraft 

acquisitions and from DoD and AF policy on life cycle costing.  By collecting multiple 

sources of data, the potential for bias in the analysis was reduced.   

Assessing the Validity of the Research Method 

 In order to provide a useful tool to RMLV design and planning personnel, the 

research method outlined above must be validated.  Quantitative researchers typically 

focus on ensuring the internal and external validity of their research design.  Internal 

validity is defined as “the extent to which [the] design and the data it yields allow the 

researcher to draw accurate conclusions about cause-and-effect and other relationships 

within the data” (Leedy, 2005: 97).  External validity is “the extent to which…results 

apply to situations beyond the study itself” (Leedy, 2005: 99).  In the case of this 

research, external validity is not of great concern, as the results of the research are meant 

to provide insight into this specific problem.  However, the research method modeled 

upon the AF process for determining manpower requirements should be proven to yield 

an accurate representation of what the true AF manpower requirements for support of an 

RMLV fleet will be.   
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 Qualitative researchers rely on various methods of supporting validity of their 

findings.  One method that supported the validity of this research was triangulation, or 

“comparing multiple data sources in search of common themes” (Leedy, 2005: 100).  

Additionally, following manpower determination methods outlined in AF policy ensured 

that the findings of this research were valid within the AF construct.  Finally, sensitivity 

analysis was performed where applicable to account for as much variability in RMLV 

design as possible and maximize the utility of research findings to the RMLV 

development process. 

Summary 

 In this chapter, a step-by-step qualitative research methodology was outlined.  

This method was based upon AF guidance for manpower determination and the synthesis 

of logistics support data from MILEPOST and its source platforms.  Validity was 

achieved through synthesizing multiple data sources, following standardized AF 

procedures, and performing sensitivity analysis.  The next chapter will begin execution of 

this research methodology by comparing MILEPOST activities to available AF technical 

expertise. 
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V.  Analysis of Required Technical Expertise 
  

Although the RMLV will differ considerably from any weapons system in the AF 

inventory, the AF manpower pool offered a great deal of applicable technical expertise.  

Because one of the objectives of RMLV design is to achieve “aircraft-like” operations, 

many of the activities identified in MILEPOST were based on aircraft operations, and 

AFSCs were applied directly.  Additionally, activities that were derived from Shuttle or 

ICBM operations correlated strongly to AFSCs for Aircraft Maintenance or Space and 

Missile Operations and Maintenance.  This chapter provides an introduction to the 

AFSCs that apply to ground support operations for the RMLV, identifies the correlation 

between those AFSCs and each stage of the regeneration process, and identifies any 

manpower shortfalls for the RMLV. 

AFSC Analysis 

The AF manpower structure currently accounts for many career fields for aircraft, 

space, and missile mission support.  As established in Chapter II, Literature Review, any 

AFSCs related to Maintenance and Logistics Readiness formed the available support pool 

for RMLV regeneration activities.  In order to specifically identify the career fields 

within these categories, the AF Officer and Enlisted Classification Directories, which list 

all approved AF standard AFSCs, were reviewed.  AFSCs were divided into Direct 

Support and Indirect Support categories with respect to the RMLV.  Additionally, it was 

noted that certain functions performed in support of mission requirements were not 

captured by one specific AFSC.  Personnel performing these functions are critical to 

mission success, but they may be assigned from a variety of AFSCs, and were addressed  
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under a third category, Cross-Functional Requirements.  Finally, as specified in Chapter 

II, Literature Review, base support and infrastructure functions such as Civil Engineering 

and Security Forces were not addressed in this research.  

Direct Support AFSCs. 

 Aircraft operations were a direct input to the development of the MILEPOST 

model, particularly in the Recovery and Ground Maintenance segments (Martindale, 

2006; Pope, 2006).  As a result, the Manned Aerospace Maintenance AFSCs listed in 

Table 4, developed to support AF aircraft, form part of the Direct Support manpower 

pool available for RMLV support. 

Table 4.  Manned Aerospace Maintenance AFSCs  
(Air Force, AFOCD, 2006: 74; Air Force, AFECD, 2006: 71-99) 

Manned Aerospace 
Maintenance 21AX Maintenance Officer

Avionics 2A600 Chief Enlisted Manager 2A0X1
Avionics Test Station and 
Components

2A090 Superintendent

Aerospace Maintenance 2A300 Chief Enlisted Manager 2A5X1 Aerospace Maintenance

2A590 Superintendent 2A5X3 Integrated Avionics

Aerospace Propulsion 2A600 Chief Enlisted Manager 2A6X1 Propulsion

2A691 Superintendent
Aerospace Ground 
Equipment (AGE) 2A600 Chief Enlisted Manager 2A6X2 AGE

2A692 Superintendent

Aircraft Systems 2A600 Chief Enlisted Manager 2A6X4 Fuel Systems

2A690 Superintendent 2A6X5 Hydraulics

2A6X6 Electrical and Environmental

Aircraft Fabrication 2A600 Chief Enlisted Manager 2A7X1 Metals Technology

2A790 Superintendent 2A7X2 NDI

2A7X3 Structural Maintenance

Manned Aerospace Maintenance

Management and Supervision Technicians

  

 In addition to personnel supporting Manned Aerospace Maintenance, Munitions 

and Weapons personnel may also contribute to Direct Support.  As indicated in the 

Recovery segment of MILEPOST, the potential ability of the RMLV to return with 
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External Stores is equated to operations conducted when an F-16 lands with unexpended 

ordnance.  This suggests that the functions of integrating and possibly unloading 

payloads and/or ordnance could be the responsibility of AF personnel with the AFSCs 

listed in Table 5. 

Table 5.  Munitions and Weapons AFSCs  
(Air Force, AFOCD, 2006: 74; Air Force, AFECD, 2006: 153-157) 

Munitions Systems 2W000 Chief Enlisted Manager 2W0X1 Munitions Systems

2W091 Superintendent

Aircraft Armament Systems 2W100 Chief Enlisted Manager 2W1X1 Aircraft Armament Systems

2W191 Superintendent

Munitions and Weapons

Management and Supervision Technicians

  

 Finally, the AF Missile and Space Systems Maintenance Career Field offers 

capabilities that are well-suited to RMLV operations.  AF personnel in this career field 

are responsible for the AF inventory of ICBMs, one of the platforms referenced in 

MILEPOST development.  Additionally, one of the competency sets encompassed by this 

career field is the ability to “acquire, activate, and supervise assembly, transportation, 

maintenance, inspection, modification, and launch processing of spacelift boosters,  

satellites, and subsystems” (Air Force, AFECD, 2006: 125).  The AFSCs in Table 6 are 

included in Missile and Space Systems Maintenance. 

Table 6.  Missile and Space Systems Maintenance AFSCs  
(Air Force, AFOCD, 2006: 75; Air Force, AFECD, 2006: 125-130) 

21MX Missile Maintenance Officer
Missile and Space Systems 
Maintenance 2M000 Chief Enlisted Manager 2M0X1

Missile and Space Electronic 
Maintenance

2M090 Superintendent 2M0X2
Missile and Space Systems 
Maintenance

Missile and Space Systems Maintenance

Management and Supervision Technicians
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Indirect Support AFSCs. 

 In addition to the hands-on, technical operation and maintenance of each RMLV, 

indirect support functions in the categories of Logistics Ground Support, Maintenance 

Support and Other Ground Support will be required to support regeneration activities.   

 Logistics Ground Support AFSCs, listed in Table 7, perform the functions of an 

AF Logistics Readiness Squadron: procurement, storage, and distribution of supplies and 

fuels; development and supervision of logistics and support plans and agreements; 

packaging, handling, and shipment of freight; operation and maintenance of mission 

support vehicles; and inspection, preparation, and loading of freight onto military aircraft. 

Table 7.  Logistics Ground Support AFSCs  
(Air Force, AFOCD, 2006: 77; Air Force AFECD, 2006: 119-124, 137-152) 

Logistics Management 21RX Logistics Readiness Officer

Fuels Management 2F000 Chief Enlisted Manager 2F0X1 Fuels

2F091 Superintendent

Logistics Plans 2G000 Chief Enlisted Manager 2G0x1 Logistics Plans

2G091 Superintendent

Supply Management 2S000 Chief Enlisted Manager 2S0X1 Supply

2S090 Superintendent

Traffic Management 2T000 Chief Enlisted Manager 2T0X1 Traffic Management

2T091 Superintendent

Management and Supervision

Logistics Ground Support

Technicians

Vehicle Maintenance 
Management 2T300 Chief Enlisted Manager 2T3X1

Vehicle/Vehicular Equip 
Maintenance

2T391 Superintendent 2T3X2 Special Vehicle Maintenance

2T3X4
General Purpose Vehicle 
Maintenance

2T3X5 Vehicle Body Maintenance

2T3X7
Vehicle Management and 
Analysis

Air Transportation 2T200 Chief Enlisted Manager 2T2X1 Air Transportation

2T291 Superintendent  

Maintenance Support functions include analyzing repair data, scheduling 

maintenance activities, and managing maintenance facilities.  Aircraft and space and  
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missile Maintenance Support personnel are categorized under the AFSCs in Table 8.  

Table 8.  Maintenance Support AFSCs (Air Force, AFECD, 2006: 133-136, 125-130) 

Maintenance Support 2R000 Chief Enlisted Manager 2R0X1
Maintenance Management 
Analysis

2R091 Superintendent 2R1X1
Maintenance Management 
Production

Missile and Space  Support 2M000 Chief Enlisted Manager 2M0X3 Missile and Space Facilities

2M091 Superintendent

Maintenance Support

Management and Supervision Technicians

 

 In addition to Logistics and Maintenance Support, Other Ground Support 

functions are required to ensure a safe and successful mission.  Safety personnel ensure 

the safety of the launch pad, vehicle, and all personnel involved in regeneration activities.  

Space Systems Operations personnel provide “space lift operations support to fulfill war 

fighting and national requirements” (Air Force, AFECD, 2006: 40).  Precision 

Measurement Equipment Laboratory personnel provide “maintenance, modification, 

repair, calibration, and certification for test, measurement, and diagnostic equipment,” 

(Air Force, AFECD, 2006: 132), which will be especially critical if the RMLV utilizes an 

IVHM system.  AFSCs assigned to these specialties are listed in Table 9. 

Table 9.  Other Ground Support AFSCs  
(Air Force, AFECD, 2006: 40, 59-60, 132; Air Force, AFOCD, 2006: 49) 

Safety 1S000 Chief Enlisted Manager 1S0X1 Safety

1S090 Superintendent

Space Systems Operations 13SX
Space and Missile Operations 
Officer 1C6X1 Space Systems Operations

1C600 Chief Enlisted Manager

1C691 Superintendent

PMEL 2P000 Chief Enlisted Manager 2P0X1 PMEL

2P091 Superintendent

Other Ground Support

Management and Supervision Technicians
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Cross-Functional Support. 

 Certain oversight and operations management positions authorized in an AF unit 

manpower structure are staffed based on a desired level of experience and excellence in 

an overall discipline, and may be performed by personnel with varying AFSCs within 

that discipline.  The cross-functional nature of these positions prevents us from capturing 

them directly from the AFSC data, but they are critical to the mission success of any unit.  

These functions include:  Quality Assurance (QA), Inspection, and Maintenance 

Operations Center (MOC). 

Quality Assurance (QA). 

The QA function within the Maintenance Support discipline is responsible 

for managing an organization’s Maintenance Standardization and Evaluation Program, 

through which “the quality of equipment and the proficiency of maintenance personnel” 

are evaluated (Air Force, AFI 21-101, 2006: 190).  QA inspectors may be  drawn from 

individual maintenance workcenters once they have six months of time in the unit, and 

are assigned to QA duties for 24 to 36 months (Air Force, AFI 21-101, 2006: 194).  The 

QA function is aligned administratively within the Maintenance Operations Squadron, 

but reports directly to the Group Commander due to its unique role as the centralized 

management point for “identify[ing] underlying causes of poor quality in the 

maintenance production effort…and recommending corrective actions to supervisors” 

(Air Force, AFI 21-101, 2006: 190). 

Inspection.  

The consolidated Inspection function within a Logistics Readiness 

Squadron is managed by the Procedures and Accountability flight (Air Mobility 
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Command, AMCMD 716, 2004: 5), with the assistance of established Inspection 

functions within each of the functional areas.  Specifically, the Supply discipline requires 

that qualified inspection personnel are assigned “as required to effect maximum 

surveillance through a minimum expenditure of effort in applying adequate identification, 

condition, and status markings to items received, stored, issued, and shipped” (Air Force, 

AFMAN 23-110, 2006: Vol 1, Part 1, 4-1).  Within the Logistics Fuels specialty, a 

separate flight is established for Compliance and Environmental, responsible for 

evaluating the following:  management effectiveness, administrative/LAN procedures, 

FISC accounting procedures, operator performance, ground safety and fire prevention, 

environmental compliance, corrosion control, care of equipment and facilities, training, 

[and] procedures for product quality” (Air Force, AFI 23-201, 2004: 53).  Thus, for 

Logistics Support activities, the Inspection function will have to be taken into account in 

the manpower of each AFSC as well as the cross-functional oversight personnel in 

Procedures and Accountability. 

Maintenance Operations Center (MOC).   

The MOC “monitors and coordinates sortie production, maintenance 

production, and execution of the flying and maintenance schedules while maintaining 

visibility of fleet health indicators” (Air Force, AFI 21-101, 2006: 143).  Essentially, this 

center acts as the centralized control system for all maintenance activities, coordinating 

those activities to maximize flying missions.  In order to be assigned to the MOC, the 

AFI requires that personnel “be experienced with the MIS [Maintenance Information 

System] and be qualified by formal training or experience on at least one of the assigned 
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weapons systems” (Air Force, AFI 21-101, 2006: 145), which allows personnel from any 

AFSC to staff the center. 

AFSC Assignment to MILEPOST Activities 

 While the current AF manpower structure incorporates a considerable variety of 

technical capabilities supporting air and space missions, it may still be insufficient for 

support of the unique hybrid characteristics of the RMLV.  In order to determine the 

suitability of current AFSCs to RMLV ground support operations, a matrix was 

developed listing all of the RMLV regeneration activities defined in MILEPOST and an 

appropriate AFSC was assigned to each activity, drawing from the Direct Support, 

Indirect Support, and Cross-Functional AFSC pools identified above.  The primary 

purpose of this matrix, located at Appendix A, was to identify those regeneration 

activities that require technical expertise that is wholly or partially absent from current 

AFSC resources.  

As such, the matrix focused only on assigning at least one AFSC to each activity, 

and does not capture the entire scope of support required for any activity.  For example, 

the activity in which the Launch Vehicle is towed to the maintenance hangar would be 

performed primarily by the Aerospace Ground Equipment troop operating the tow 

vehicle and the maintenance personnel acting as spotters, as depicted in Table 10. 

Table 10.  AFSC Assignment to MILEPOST Activity (Pope, 2006) 

Ground Maintenance Operations 
Disconnection from the Launch Vehicle 
Activity Platform AFSC Comments 

Transport to Mx Bay Aircraft 2A6X2, 2AXXX 
AGE, spotters/wing-walkers (any 
maintenance AFSC) 
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However, assigning the 2A6X2 and 2AXXX AFSCs to this activity fails to 

capture the MOC personnel scheduling the maintenance bay and repair actions, the 

Missile and Space Facilities personnel responsible for the hangar, the Supply personnel 

responsible for providing spares for the RMLV and tow vehicle, the Vehicle 

Management personnel responsible for the maintenance of the tow vehicle, and the 

Quality Assurance and Inspection personnel overseeing all of these actions.  As a result, 

this tool does not translate directly into manpower requirements for support of the 

RMLV.  Total requirements will be determined in Chapter VII, Manpower Assessment, 

in accordance with AF policy. 

Assumptions. 

In populating the matrix, it was assumed that specific training for RMLV 

activities or support equipment operations would be provided in the same manner that it 

is provided for any new AF platform; therefore, as long as an AFSC met the general 

expertise requirement for the activity (propulsion, for example), the additional expertise 

required to repair an RMLV jet engine rather than an aircraft jet engine did not constitute 

a shortfall. 

Additionally, I assumed that the integration configuration of the RMLV 

(horizontal or vertical) would impact the AFSCs responsible for integration operations.  

Given a horizontal integration scenario, I assumed that AGE personnel would maintain 

responsibility for maneuvering the RMLV, while Air Transportation personnel would be 

responsible for aligning and attaching the second stage and payload (whether pre-

integrated or not).  In the horizontal configuration, the first stage is easily accessible to 

Air Transportation personnel to maneuver and “load” the second stage and payload.  This 
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configuration allows responsibility for the “aircraft” stage and the “cargo” stages to 

reasonably remain within their current AFSC constructs.  In a vertical integration 

scenario, however, the nature of the process necessitates that a single set of equipment be 

used to erect, align, and attach each stage.  As a result, it does not make sense to assign 

the stages of integration to multiple AFSCs, and I assigned the entire operation to AGE.  

Under this scenario, Air Transportation personnel would be responsible for preintegrating 

the second stage and payload (if applicable), and delivering the second stage and payload 

to AGE for final integration.  This assumption had little impact on identifying shortfalls, 

as both AFSCs are available and sufficient for these operations.  However, the 

assignment choices will impact the Manpower Assessment in Chapter VII. 

While the matrix verified that current AFSCs sufficiently capture many of the 

technical specialties required for RMLV ground operations, there are shortfalls in the AF 

manpower structure that will need to be addressed. 

Shortfalls 

 Shortfalls identified in the matrix occurred in the Recovery and Pre-Launch 

Operations phases of MILEPOST.  Maintenance activities exhibited no shortfalls because 

the systems contained within the RMLV (fuel systems, hydraulic systems, propulsion 

systems, structures) are also contained within AF aircraft and ICBMs.  Recovery and Pre-

Launch Operations, however, included several processes that differ significantly from 

similar operations performed on aircraft. 

Shortfalls can be classified into two categories: Lack of Expertise and Lack of 

Experience.  A Lack of Expertise shortfall occurs when an RMLV regeneration activity 

requires a skill set that is not required by any platform currently in the AF inventory.  
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Such a shortfall would require the addition of the entire skill set to a current AFSC or 

procurement of the required support through a contract.  This type of shortfall is not 

historically unprecedented.  When the B-2 was introduced into the AF inventory, the 

unique maintenance requirements generated by its Low Observable and Thermal 

Protection structural components required both specific training for personnel with the 

Structural Repair AFSC and contracted support from Northrop Grumman to ensure the 

continuity of maintenance operations (B-2 Visit, 2006).  The training commitment for 

this type of shortfall may be significant due to the lack of previously existing, similar 

training.  A Lack of Experience shortfall occurs when current AF weapons systems 

require some general level of knowledge that could be applied to the RMLV activity, but 

the scope of the RMLV activity is much greater than that currently experienced in the 

AF.  A Lack of Experience shortfall can be reasonably solved through additional training. 

Lack of Expertise Shortfalls. 

 Lack of Expertise shortfalls occurred primarily as a result of the unique propellant 

alternatives for the RMLV, and the hazardous conditions that can result from their use.  

Hazardous Gas Purge, Coolant Ground Support Equipment, Vaccuum Vent Duct 

Inerting, Load Hypergolic Fuel, and Load RP-1 Fuel MILEPOST activities all require 

technical expertise beyond that currently inherent to any AFSC. 

Hazardous Gas Purge.   

The propellants utilized by the launch vehicle have the potential to create 

hazardous gas conditions within the RMLV, requiring that the vehicle be purged upon 

landing for the safety of personnel involved in the regeneration activities.   
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Coolant Ground Support Equipment (GSE).   

The extreme heat generated by the high speed takeoff and reentry into the 

earth’s atmosphere require that the RMLV be hooked up to coolant support immediately 

upon landing.  The Coolant GSE maintains a suitable temperature for electronic and 

control systems as the vehicle’s onboard cooling system is powering down (Martindale, 

2006: 10).  

Tank Vent RMLV Main Engine.   

This process addresses the “venting of fuels and fumes from the RMLV 

main engine (ME) tanks to ensure potential hazards are eliminated prior to the vehicle 

entering the maintenance facility” (Martindale, 2006: 36). 

Lack of Experience Shortfalls. 

 The Lack of Experience shortfalls occurred in safing and fueling operations that 

are commonly performed on AF aircraft.  The RMLV, however, introduces new and 

more hazardous materials to the operations. 

Drag Chutes.   

This operation involves safing the drag chute pyrotechnics.  While the     

F-104A employed drag chutes, it is no longer active in the AF inventory (F104A, 2007).  

The B-52 maintains the capability to deploy drag chutes for landing, but this is not part of 

normal operating procedures (What a Drag, 2007).  However, pyrotechnics are used in 

ejection seats, and this activity simply reflects a greater scope of a similar operation. 

LOX Safing.   

In addition to the pyrotechnics, the ground crew must safe the LOX tanks 

to “ensure no venting occurs which could produce a fire hazard condition” (Martindale, 
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2006: 32).  While utilized in small quantities as a crew oxygen source, LOX is not used 

as a major fuel source in AF weapons systems, so the presence of LOX in these quantities 

constitutes a shortfall in experience.  

Hypergolic Leak Detection.  

If the RMLV design includes hypergolic fuels, leak detection will be part 

of the safety assessment upon landing.  The hypergolic fuel hydrazine is used in small 

quantities in the Emergency Power Unit of the F-16.  As this unit is only used in 

emergencies, AF personnel have limited exposure to hydrazine.  The RMLV will require 

greater experience in detecting and managing hypergolic fuel leaks. 

Load Hypergolic Fuel/Load RP-1 fuel.   

Neither of these fuel alternatives is common to current AF platforms. 

Chill and Load LOX and Fuel.   

“RMLVs require both fuel and oxidizer for engine operation” 

(Stiegelmeier, 2006: 34).  This propellant combination is not common to any other AF 

airframe, and Fuels personnel will require additional qualification and training to handle 

and distribute this fuel type. 

Summary 

 All of the ground support activities identified in MILEPOST can be supported by 

the AFSC structure in its current form; however, as with the introduction of any new 

platform, there will be shortfalls in expertise and experience.  These shortfalls will have 

to be addressed in a training program; training implications will be discussed in Chapter 

VIII, Conclusions and Future Research. 
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VI.  Analysis of Organizational Structure 

Air Force Policy Docurment 38-1, Organization, states that the principal 

characteristics desired in Air Force organizations are mission-orientation, unambiguous 

command, decentralization, agility, flexibility, simplicity, and standardization (Air Force, 

AFPD 38-1, 1996: 1).  Air Force Policy specifically requires that “[o]rganizations with 

like responsibilities should have similar organizational structures” (Air Force, AFPD 38-

1, 1996: 1).  The key to assessing the future organizational structure required to support 

an RMLV fleet, then, is to determine what current Air Force organization possesses “like 

responsibilities” to the RMLV mission, and model the organizational structure on that 

example.  Because the RMLV is not exactly like anything in the current inventory, but is 

a synthesis of a space mission with the desire for an aircraft-like operational capacity, we 

will examine the Air Force organizational structures of operational units within AF Space 

Command (AFSPC), Air Combat Command (ACC), and Air Mobility Command (AMC) 

to determine which aspects of each structure appear to be most appropriate to the RMLV 

mission.  

In Chapter I, Introduction, the RMLV mission was defined as:  to preserve the 

nation’s freedom of operations in space by providing dependable, responsive spacelift 

capability to deliver payloads supporting deployment, sustainment, augmentation, and 

operations missions within hours or days of initial tasking.  The following sections 

summarize a comparison of this mission statement to the mission statements of Air Force 

organizations at the MAJCOM, Wing, and Unit levels to capture similarities and 

determine the organizational structure that will define the RMLV fleet.  Additionally, 
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similarities and differences in the maintenance and ground support missions will be 

addressed to further pinpoint the optimal logistics support structure for the RMLV.  

MAJCOM-Level Evaluation  

AFSPC would appear to be the natural organizational location for an RMLV 

wing.  The mission of AFSPC is “to defend the United States through the control and 

exploitation of space” (Air Force Space Command, 2006).  AFSPC is a combat-oriented 

command, seeking to “provide a full-spectrum Space Combat Command preeminent in 

the application of space power for national security and joint warfare” through the 

application of four strategic focal points: securing the space domain and providing space 

combat capabilities to warfighters, maintaining deterrent capabilities and pursuing new 

triad capabilities, excelling in space acquisition, and providing world-class professional 

development and quality-of-life support to AFSPC personnel (Air Force Space 

Command, 2006).  The RMLV, as currently envisioned, is a combat support vehicle, and 

seems to fit within the AFSPC mission and strategic focus only in that its payload may 

provide combat, deterrent, or triad capabilities, and it would be obtained through the 

space acquisition process.  However, AFSPC assets do include all of the current AF space 

and missile launch vehicles, so that while the mission statement does not reflect similar 

organizational responsibilities, those responsibilities are supported by assets within the 

AFSPC organization.  This will be examined in greater detail at the Wing and Unit levels, 

as we evaluate the missions of Space Launch Wings and their sub-organizations.  

Air Combat Command encompasses the AF’s fighter, bomber, reconnaissance, 

battle-management, and electronic-combat platforms, and is the “primary force provider 

of combat airpower to America's warfighting commands” in support of global 
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implementation of national security strategy (Air Combat Command, 2006).  ACC also 

provides “command, control, communications and intelligence systems, and conducts 

global information operations” as well as maintaining “combat-ready forces for rapid 

deployment and employment while ensuring strategic air defense forces are ready to meet 

the challenges of peacetime air sovereignty and wartime air defense” (Air Combat 

Command, 2006).  ACC assets are highly-deployed, providing support and augmentation 

to geographical commands and AOR commanders.  The RMLV mission includes 

launching and maintaining satellites that directly support information operations for the 

warfighter, as well as providing deterrence, response, or denial of access against agents 

that seek to challenge our peacetime space sovereignty or wartime space defense.  In 

these respects, the mission of the RMLV fleet is similar to that of ACC assets; again, 

however, the vehicles themselves simply provide the delivery mechanism for the 

payloads that directly carry out these operations.  In terms of ground support operations, 

previous research has identified the B-2 as a platform that is “similar in many ways to the 

launch vehicle,” and as a result the B-2 was used as a source of input for constructing the 

Ground Maintenance Operations segment of MILEPOST (Pope, 2006: 22).  This 

constitutes a basis for “like responsibilities,” particularly regarding logistics support, and 

indicates that an appropriate organizational structure may be similar to an ACC bomber 

wing.  We will explore the bomber mission comparison in greater detail at the Wing and 

Unit levels.  Finally, since the RMLV is to be unmanned, Unmanned Aerial Vehicles 

(UAVs) like the Predator and Global Hawk, both ACC assets due to their reconnaissance 

mission, may provide a relevant comparison platform for organizational structures.  
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These organizations, as well, will be explored in further detail at the Wing and Unit 

levels.   

Finally, the spacelift function of the RMLV fleet would seem to align with the Air 

Mobility Command’s mission to provide “rapid, global mobility and sustainment for 

America's armed forces” (Air Mobility Command, 2006).  As AMC recognizes, “without 

the capability to project forces, there is no conventional deterrent” (Air Mobility 

Command, 2006).  The same will be true in space, and the RMLV fleet will provide the 

asset projection capability that enables its mission focus of deterrence.  Additionally, the 

projected use of the RMLV fleet to provide space cargo-delivery capability, and even 

future space refueling operations as part of satellite maintenance, bears significant 

similarity to AMC’s fleets of airlifters and air refuelers.  AMC is focused on providing a 

“rapid, tailored response” (Air Mobility Command, 2006) that directly correlates with the 

RMLV requirement for responsiveness, and AMC’s combat support role is similar to the 

role we expect RMLVs to play in the combat environment.  Based on these similarities, 

we will continue to assess the applicability of an AMC organizational structure at the 

Wing level. 

The mission of the RMLV contains elements that align it with portions of each of 

the operational MAJCOMs examined.  While the mission statement bears the greatest 

direct resemblance to the mission and operations of an AMC wing, the RMLV is a space 

vehicle like those assigned to AFSPC, and it also supports reconnaissance and 

information support missions that traditionally fall under ACC.  Additionally, the RMLV 

maintenance requirements bear significant similarities to B-2 logistics support.  In the 
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next section, an examination of individual Wing missions within these MAJCOMs will 

attempt to narrow the organizational correlations to the RMLV. 

Wing-Level Evaluation 

 Since AFSPC, ACC, and AMC missions all correlated in some manner to the 

RMLV mission, this section will provide an evaluation of aircraft Wings within all three 

MAJCOMs.  Additionally, while the AF does not operate a Wing for any unmanned 

aircraft, the section will conclude with an examination of UAV Squadrons for similarities 

to the RMLV. 

Air Force Space Command Wings. 

 AFSPC is made up of Space Wings, which encompass both missile and space 

launch assets.  The mission statements of both types of Space Wing will be reviewed to 

determine similarities to the RMLV mission. 

Missile Wings.   

The mission of the 90th Space Wing at F.E. Warren AFB, Wyoming, is to 

“defend America with the world’s premier combat ready ICBM force: On time, Every 

time, Any time” (90th Space Wing Mission, 2006).  In like manner, the mission of the 91st 

Space Wing at Minot AFB, North Dakota, is to “defend the United States with safe, 

secure intercontinental ballistic missiles, ready to immediately put bombs on target” 

(Rough Riders, 2006).  The nature of the ICBM mission requires maintaining a constant 

state of readiness to launch, without actually launching.  Unlike an aircraft wing, ICBMs 

are not regularly launched and recovered, though they will be frequently tested for system 

readiness.  At current Shuttle launch rates, which have historically achieved a maximum 

of seven to eight flights per year (McCleskey, 2005: 3), RMLVs would not often be 
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actively employed, but primarily maintained in a constant state of readiness to respond to 

a space launch need.  In this sense, the RMLV mission could be very much like the 

mission at an ICBM wing, and the ICBM maintenance support structure may provide a 

comparable foundation for the RMLV logistics support organization, which will be 

further explored at the Unit level. 

Space Launch Wings.   

At the 45th Space Wing, Patrick AFB, Florida, host unit to Cape Canaveral 

Air Force Station, the mission is to “assure access to the high frontier and to support 

global operations” (45th Space Wing, 2006).  Again, in a similar fashion, the mission of 

the 30th Space Wing, Vandenberg AFB, California, is to “defend the United States 

through Launch, Range, and Expeditionary Operations” (30th Space Wing Mission & 

Vision, 2006).  Cape Canaveral, as the launch site for the Space Shuttle, the nation’s only 

current form of reusable launch vehicle, provides a potential for commonality that does 

not exist with any other AF organizational structure.  In fact, as stated in the Introduction, 

Cape Canaveral and Vandenberg have been identified as the two most likely bases of 

operation for the RMLV fleet.  Additionally, the mission of providing space access to 

defend the US and provide global support to our forces is consistent with the RMLV 

operational responsibilities.  However, there are key differences that suggest that the 

logistics support organizations at these two bases will not provide a sufficient framework 

for RMLV organizations.  First, at Cape Canaveral, the United Space Alliance exercises 

“prime responsibility for the day-to-day operations of NASA’s Space Shuttle Program,” 

while RMLV support is assumed to be a blue-suit operation (USA History, 2006).  

Second, at Vandenberg, AF launch missions are accomplished through EELV Launch 
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Capability (ELC) and Launch Services (ELS) contracts, in which the contractor provides 

“engineering; program management; launch and range site activities; and mission 

integration” for individual missions which are purchased two years in advance of launch 

(Air Force Awards EELV Funding, 2006).  As a result, neither of these Wings, while 

possessing similar mission responsibilities to the RMLV, will provide an accurate 

foundation for its logistics manpower support structure. 

Air Combat Command Wings. 

 As indicated by the missions outlined at the MAJCOM level, ACC Wings support 

a wide variety of combat and direct combat support missions.  Specifically, in this 

section, Fighter and Bomber Wings will be evaluated for similarities to the RMLV 

mission. 

Fighter Wings.   

While the 1st Fighter Wing, Langley AFB, Virginia “trains, organizes and 

equips expeditionary Airmen; [to] deploy, fight and win” (1st Fighter Wing, 2006), the 4th 

Fighter Wing, Seymour Johnson AFB, North Carolina “provides worldwide deployable 

aircraft and personnel capable of executing combat missions in support of the Aerospace 

Expeditionary Force” (Seymour Johnson AFB Mission, 2006).  Similarly, at Eglin AFB, 

Shaw AFB, Cannon AFB, Holloman AFB, Mountain Home AFB, and Hill AFB, the 

mission focus is on force projection, expeditionary operations, and global, rapid 

deployment capability (33rd Fighter Wing, 2006; Shaw AFB Mission, 2006; 27th Fighter 

Wing, 2006; Holloman AFB Mission, 2006; 366th Fighter Wing Mission, 2006; 388th 

Fighter Wing Mission, 2006).  Additionally, while Fighter aircraft inventories are large, 

with multiple squadrons in a wing, the RMLV fleet will be small, a single unit with only 
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six vehicles.  The logistics support organization for a Fighter Wing has a vastly different 

magnitude and mission focus than what will be required for the RMLV. 

Bomber Wings.   

Bomber Wings provide some greater degree of similarity to the RMLV.  

While platforms like the B-1 are primarily expeditionary (Dyess AFB Mission, 2006; 

Ellsworth AFB Mission, 2006), long-range bombers like the B-52s focus on the ability 

“to provide responsive, flexible and accurate” support (2nd Bomb Wing Mission, Vision 

& Vector, 2006) or on providing the capability to deliver a payload anywhere in the 

world (Whiteman AFB Mission, 2006).  This mission is more similar to the RMLV 

responsibility to provide responsive spacelift to deliver payloads in response to global 

warfighter requirements.  Specifically, the B-2 logistics support infrastructure encounters 

unique challenges that are similar to the maintenance requirements of the RMLV.  First, 

the B-2 structural elements have Low Observable (LO) components, including thermal 

protection tiles, that require special maintenance procedures that are not common to other 

airframes (B-2 Spirit, 2006; Visit, 2006).  In fact, much like the Shuttle’s Thermal 

Protection System tiles account for 30% of its maintenance man-hours (McCleskey, 

2005: 38), the B-2’s LO system is its most maintenance-intensive.  A 2006 program that 

replaced 60% of the LO material with a new, more maintenance-friendly Alternate High 

Frequency Material yielded a 50% decrease in total maintenance man-hour requirements 

(Boston Program, 2006).  Additionally, with only 21 aircraft in the AF inventory (B-2 

Spirit, 2006), maintainers face a unique challenge: maintenance problems simply do not 

occur with enough frequency for personnel to achieve the same level of proficiency as in 

larger units.  This problem is compounded by the typical turnover rate of AF personnel, 
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and introduces inefficiency into maintenance operations (Visit, 2006).  The B-2 

maintenance unit overcame this obstacle by partnering with Northrop Grumman 

contractors, who had achieved a greater level of proficiency by performing the same type 

of activities repetitively on the production line (Visit, 2006).  The same maintenance 

challenges faced by the B-2 will be obstacles for the RMLV, with its unique systems 

requirements and small fleet size.  As a result, the B-2 logistics support infrastructure will 

provide a sound basis for developing an RMLV ground support organization. 

Air Mobility Command Wings. 

 Air Mobility Command provides for all of the airlift and air refueling 

requirements of the armed forces.  In this section, both Airlift and Air Refueling Wings 

will be examined, as each function is part of the proposed RMLV mission. 

Airlift Wings.   

Airlift Wings utilize a wide variety of platforms in the performance of 

their mission.  Some, like the C-20 and C-21, are specialized to aeromedical evacuation 

or support of high-ranking government officials (C-20, 2006; C-21, 2006), while others, 

like the C-130, C-17, and C-5, specialize in the movement of cargo in support of global 

missions.  In this section, C-130, C-17, and C-5 Wings will be the primary focus due to 

the more generalized nature of their missions.  Pope AFB, with its fleet of C-130s, “is 

capable of deploying a self-sustaining war fighting package anywhere in the world at a 

moment’s notice, to form our nation’s premiere forced entry capability with the United 

States Army,” and also deploys to provide intra-theater airlift for global areas of 

operation (43rd Airlift Wing, 2006).  This mission lacks similarity to the RMLV mission, 

which does not include a focus on forced entry capability or deployment to theater.  The 
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62nd Airlift Wing, on the other hand, utilizes C-17s to “deliver global airlift, focused 

logistics, and agile combat support for America” (62nd Airlift Wing, 2006).  This mission 

is similar in nature to that of the RMLV, which carries payloads to provide spacelift, 

space logistics support, and combat support capabilities.  However, the specifics of the 

mission requirements will differ.  The 437th Airlift Wing at Charleston AFB, also 

operating C-17s, is tasked to “provide for the airlift of troops and passengers, military 

equipment, cargo and aeromedical airlift and to participate in operations involving the 

airland or airdrop of troops, equipment and supplies when required” (437th Airlift Wing, 

2006).  C-5s out of Dover AFB are focused on “providing worldwide movement of 

outsized cargo and personnel on scheduled, special assignment, exercise and contingency 

airlift missions” (436th Airlift Wing, 2006).  The RMLV, as currently conceived, will 

primarily deliver equipment and cargo payloads, with little focus at this time on 

personnel movement.  Payloads will be delivered to provide a space capability, rather 

than to transport personnel and cargo into a theater of operations.  In summary, while the 

spacelift function is a critical aspect of the RMLV mission, the mission specifics of airlift 

aircraft do not provide a strong basis for comparison for a future RMLV unit. 

Air Refueling Wings.   

Air Force air refueling is provided by KC-10 and KC-135 aircraft, 

operating as part of Air Mobility Wings or Air Refueling Wings, respectively.  In their 

role as refuelers, both KC-10 units and KC-135 wings recognize their primary 

contribution to providing “global reach by conducting air refueling and airlift where and 

when needed” (McConnell AFB, 2006).  While space refueling may be part of the RMLV 
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mission of satellite maintenance, there is not a great enough similarity for a tanker unit to 

provide a useable framework for an RMLV unit. 

UAV Squadrons. 

 The MQ-1, Predator, is classified as a UAV, but consists of an entire system of 

equipment including “four aircraft (with sensors), a ground control station, a Predator 

Primary Satellite Link, and approximately 55 personnel for deployed 24-hour operations” 

(MQ-1 Predator, 2006).  As such, it does not provide a high degree of similarity to the 

RMLV, regardless of the overlapping reconnaissance mission characteristics.  The RQ-

4A, Global Hawk, is an unmanned reconnaissance platform that, once programmed with 

mission data, can “autonomously taxi, take off, fly, remain on station capturing imagery, 

return and land” (Global Hawk, 2006).  Similarly, the RMLV will be expected to take 

off, fly to disengagement altitude, return and land with no crew onboard.  The Global 

Hawk is still undergoing testing, but one operational squadron is assigned at Beale AFB, 

tasked to operate and maintain “deployable, long-endurance RQ-4A aircraft and ground-

control elements to fulfill training and operational requirements generated by the Joint 

Chiefs of Staff in support of unified commanders and the Secretary of Defense” (12th 

Reconnaissance Squadron, 2006).  Like the RMLV, fleet size is small, and results in a 

single squadron of vehicles assigned to a wing along with U-2 reconnaissance aircraft.  

Due to the similarities in operational profile, combat support mission, and small fleet 

size, the Global Hawk Squadron provides a comparable organizational framework for an 

RMLV unit, and will be explored in further detail at the Unit level. 
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Unit-Level Evaluation 

Up to this point, examination of the mission statements of various wing-level 

organizations has revealed that an ICBM Wing, a B-2 Bomber Wing, and a Global Hawk 

Squadron all provide reasonable foundations for modeling an RMLV logistics support 

structure, while Space Launch Wings, Fighter Wings, Airlift Wings, and Air Refueling 

Wings do not.  In this section, the logistics support units for these wings will be examined 

and evaluated to arrive at a final estimation of an RMLV organizational structure.  

ICBM Units. 

 The 90th Space Wing at F.E. Warren AFB is made up of the following groups:  

Operations Group, Maintenance Group, Security Forces Group, Mission Support Group, 

and Medical Group (Units at F.E. Warren AFB, 2006).  Of these, the Maintenance Group, 

Security Forces Group, and Mission Support Group include functions that may apply to 

logistics ground support requirements for an RMLV.  The high value of the RMLV and 

its critical role in providing for the national defense initially seem to justify a Security 

Forces Group, rather than the typical Squadron.  However, the specific role of the 90th 

Security Forces Group is to protect “15 Missile Alert Facilities and 150 Minuteman III 

Intercontinental Ballistic Missiles on 24-hour alert throughout a 12,600 square mile area 

spanning three states” (Units at F.E. Warren AFB, 2006).  The magnitude of this mission 

justifies a separate Security Forces Group, and will not be present in an RMLV unit.  The 

90th Maintenance Group works “24 hours a day, 365 days a year to ensure the world’s 

most powerful ICBM force remains safe, reliable, and effective” (Units at F.E. Warren 

AFB, 2006), and is made up of a Missile Maintenance Squadron and Maintenance 

Operations Squadron (90th Space Wing, 2006).  This degree of support is what will be 
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expected from an RMLV Maintenance Group.  The 90th Logistics Readiness Squadron 

within the Mission Support Group is another agency that would be expected to provide 

ground support in an RMLV unit. 

The 91st Space Wing at Minot AFB, in comparison, is comprised of an Operations 

Group, Maintenance Group, and Security Forces Group (Rough Riders, 2006).  The 91st 

Maintenance Group provides both maintenance and logistics support to the ICBM fleet 

through the Missile Maintenance Squadron and the Maintenance Operations Squadron 

(Rough Riders, 2006).  Due to the small RMLV fleet size, it can be expected that a single 

group could provide both maintenance and logistics support, and the RMLV ground 

support organization modeled after an ICBM Wing would be constructed as depicted in 

Figure 27.  

 

Figure 27.  RMLV Organization Based on ICBM Structure 

Unlike Maintenance Groups supporting aircraft, this organization does not include 

a Maintenance Squadron, which performs backshop maintenance support.  While this 

function is not necessary for ICBM support, it is assumed by the MILEPOST model to be 

necessary for RMLV support, as the model includes activities such as wheel and tire 

replacement and engine maintenance that will occur in backshops.  Additionally, there is 

no Munitions Squadron as is present in the aircraft units that follow; however, a similar 

Squadron will likely be required by the RMLV due to the presence of an externally-

attached payload on every mission.  As a result, although the ICBM maintenance 

999th RMLV 
Maintenance Group

999th RMLV Maintenance 
Squadron 

999th Maintenance 
Operations Squadron 



 

91 

operations tempo may be similar to that expected for the RMLV, the organizational 

structure of the logistics elements is not sufficient to support the RMLV mission. 

B-2 Units. 

 The 509th Bomb Wing at Whiteman AFB is made up of an Operations Group, 

Maintenance Group, Mission Support Group, and Medical Group (Units at Whiteman 

AFB, 2006).  As with the Space Wings, the Maintenance Group and Mission Support 

Group contain functions that align with logistics ground support.  The 509th Maintenance 

Group is comprised of a Munitions Squadron, Maintenance Operations Squadron, 

Maintenance Squadron, and Aircraft Maintenance Squadron (Units at Whiteman AFB, 

2006).  While the Munitions Squadron, which handles the bombs loaded onto the B-2, 

does not directly correlate to the RMLV, there may be a similar squadron that handles 

payloads.  Also as with the Space Wings, the Logistics Readiness Squadron within the 

Mission Support Group would provide some ground support functions.  If structured like 

a  B-2 Wing, the RMLV organization would require the units shown in Figure 28. 

 

Figure 28.  RMLV Organization Based on B-2 Structure 

The organization supporting the B-2 includes all of the elements required to 

perform MILEPOST regeneration activities for the RMLV, and does not exhibit any 

functional activities that differ significantly from the RMLV mission or envisioned 
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operations.  As such, the B-2 organizational structure is a viable candidate for RMLV 

organizational development. 

UAV Units. 

 The 9th Reconnaissance Wing at Beale AFB is structured like the B-2 Wing, with 

an Operations Group, Maintenance Group, Mission Support Group, and Medical Group 

(Units at Beale AFB, 2006).  Again, the 9th Mission Support Group includes a Logistics 

Readiness Squadron which would support ground operations, and the 9th Maintenance 

Group is comprised of a Maintenance Squadron, Aircraft Maintenance Squadron, 

Maintenance Operations Squadron, and Munitions Squadron (Units at Beale AFB, 2006).  

The RQ-4A, Global Hawk, is flown by the 12th Reconnaissance Squadron, one of four 

flying squadrons within the Operations Group (Units at Beale AFB, 2006).  All four 

flying squadrons are supported by the Maintenance Group, so its mission requires 

“providing worldwide maintenance support for the U-2, T-38, and RQ-4 aircraft” (9th 

Maintenance Group, 2006).  As such, the structure for logistics support, depicted in 

Figure 29, would include the same components as a B-2 wing, but these units would 

provide maintenance support to the RMLV fleet as one of several operational squadrons. 

 

Figure 29.  RMLV Organization Based on UAV Structure 
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The logistics support structures of the UAV and the B-2 are essentially the same; 

the only difference is whether the same organization will be supporting other aerospace 

platforms, or will be dedicated to RMLV support.  This will be determined by the 

aerospace platforms currently on-station at the RMLV’s future base of operations, which 

will be discussed in the next section. 

Evaluation of Operational Locations 

 Recall from Chapter I, Introduction, that the RMLV fleet is likely to be stationed 

either at Vandenberg AFB or Cape Canaveral AFS, a unit at Patrick AFB, both of which 

are currently operational Space Wings.  Each of these locations has been found in this 

chapter to be lacking the “like responsibilities” necessary to establish the RMLV 

organization under its current structure.  More appropriate organizational structures have 

been identified from a B-2 Wing and a Reconnaissance Wing supporting the Global 

Hawk Squadron.  This section will explore how an appropriate RMLV logistics ground 

support organization may fit into the Space Wing structures at Patrick AFB or 

Vandenberg AFB. 

Patrick AFB. 

 The 45th Space Wing at Patrick AFB is made up of a Medical Group, Mission 

Support Group, Operations Group, and Launch Group.  Space Shuttle maintenance is 

performed through a contract with USA, so no Maintenance Group is currently present.  

Within the Launch Group, the 1st Space Launch Squadron is responsible for Delta II 

launch vehicles while the 5th Space Launch Squadron supports the Atlas V and Delta IV 

vehicles (45th Launch Group, 2006).  The Reusable Military Launch Vehicles would 
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operate as a separate squadron within this Launch Group.  The resulting wing structure at 

Patrick AFB is depicted in Figure 30 (changes denoted by dashed lines and italics): 

 

Figure 30.  RMLV Organization at Patrick AFB (Units at Patrick AFB, 2006) 

 As indicated by the organizational chart, supporting an RMLV fleet at Patrick 

AFB would entail adding a Launch Squadron, increasing the size of the Logistics 

Readiness Flight to support the new Squadron, and adding a Maintenance Group.  Based 

on the fact that all other aerospace platforms on-station receive logistics ground support 

through contractor operations and will not share ground support resources with the 

RMLV, the B-2 logistics support organization will provide the best frame of reference for 

RMLV operations  
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launch vehicles.  Within the Operations Group, Vandenberg AFB operates a Launch 

Squadron for the EELV program, a Launch Support Squadron, and the 1st Air and Space 

Test Squadron (ASTS) (Units at Vandenberg AFB, 2006).  The ASTS is the only 

organization within the AF with the capability for “full service Air Force Developmental 

Test and Evaluation…for missiles, launch vehicles and payload/launch vehicle 

integration” (30th Launch Group, 2006).  As such, this squadron may provide a 

reasonable initial organizational location for the RMLV, with the eventual development 

of a second Launch Squadron within the Operations Group.  An organizational structure  

incorporating the RMLV fleet into the 30th Space Wing would be similar to that at Patrick 

AFB, and is described in Figure 31 (changes denoted by dashed lines and italics): 

 

Figure 31.  RMLV Organization at Vandenberg AFB (Units at Vandenberg AFB, 2006) 
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ground support through contractor operations, so the B-2 organizational structure would 

provide the most accurate framework for RMLV ground support.  The organizational 

benefit of locating at Vandenberg AFB is the presence of the ASTS to support the RMLV 

as a newly-developed vehicle; however, the impact on organizational structure is the 

same at either location. 

Summary 

The objective of this chapter was to determine a currently-existing AF 

organizational structure for logistics support units that best matched the mission profile of 

the RMLV.  This objective was approached through a methodical process of comparing 

mission statements at the MAJCOM and Wing levels to identify “like responsibilities” 

that would distinguish certain organizations as suitable models for RMLV organization.  

In addition to the organization and vehicle mission statements, an assessment of 

similarities in the logistics support mission was factored into the evaluation of each 

organization.  As a result of these comparisons, an ICBM Wing, a B-2 Wing, and a 

Reconnaissance Wing supporting a UAV Squadron were each identified as providing a 

justifiable basis for RMLV ground support organization.  

Following this determination, the logistics support units for each of these wings 

were assessed to note similarities and differences in structure.  Finally, an assessment of 

the two proposed RMLV operating locations was conducted to determine the impact of 

incorporating the RMLV fleet and it logistics support units into the existing 

organizations.  The conclusion of this evaluation is that RMLV logistics ground support, 

at either of the assumed operating locations, will consist of: 
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1.  A Logistics Readiness Squadron under the Mission Support Group that is an 

augmented version of the unit already established in the Wing 

2.  A Maintenance Group, added to the Wing structure, made up of an RMLV 

Maintenance Squadron for flightline support, a Maintenance Squadron for 

backshop support, a Maintenance Operations Squadron, and a Munitions 

Squadron in accordance with B-2 organizational model.  

The manning implications of this organizational structure will be analyzed in the 

following chapter.



 

2  The results of the 2005 LCOM analysis are an input to determining manpower requirements, and do not directly 
reflect Unit Manning Document authorizations.  Additionally, LCOM manpower numbers are intended specifically 
to support the requirements of the input scenario; this scenario, not current daily operations, forms the basis for 
comparison to project RMLV requirements. 
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VII.  Manpower Assessment 

 In accordance with AF procedures, both LCOM and AFMS data were utilized to 

determine RMLV manpower requirements.  Because logistics support functions are based in part 

on the size of the maintenance mission supported, total maintenance manpower requirements 

were calculated first.  Based on the results of this assessment, calculations were performed for 

supporting logistics functions such as supply and transportation.  The manpower requirements 

derived in this chapter were, of necessity, based upon a series of comparisons rather than on 

historical man-hour data.  First, existing LCOM results from the 2005 B-2 LCOM analysis2 were 

used as a framework for the development of maintenance manpower requirements.  Since UAVs 

provide insight into support for unmanned platforms, manpower information from a UAV 

organization was used to provide comparison data to further refine workcenter estimates as 

necessary.  In order to calculate total maintenance requirements, parametric relationships were 

established based on the relative contribution of individual workcenters to total aircraft and 

Shuttle maintenance requirements, relative vehicle complexity and fleet size, and relative surface 

area.  Since the parametric relationships were estimates, sensitivity analysis was performed to 

account for a range of possible values.  To calculate the remaining ground support workforce 

requirements, AF Manpower Standards were applied for supply, fuels, and transportation 

functions, again utilizing parametric relationships and sensitivity analysis as necessary.  The 

chapter concludes with a range of the total number of personnel required to support RMLV 

regeneration activities.
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B-2 LCOM Analysis 2005 

The B-2 LCOM study divides the 509th Maintenance Group into five major sub- 

organizations: Group Staff Agencies, Aircraft Maintenance Squadron, Maintenance 

Squadron, Maintenance Operations Squadron, and Munitions Squadron.  Figure 32 

depicts the organizational structure in greater detail. 

 

 
 

 Figure 32.  509th B-2 Maintenance Group Organizational Structure  
(Air Combat Command, 2006) 
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This organizational structure was also the framework for the RMLV MXG 

organization.  Analysis of the LCOM study was conducted in two parts.  First, the 

scenario and assumptions of the study were compared to RMLV mission requirements to 

determine similarities and differences.  Second, the manpower determinations for each 

workcenter were reviewed to determine the applicability of the requirement to RMLV 

operations as reflected in MILEPOST. 

Scenario and Assumptions. 

 The study addresses manpower requirements for both sustained wartime and 

peacetime operations (Air Combat Command, 2006: 2).  Air Expeditionary Force (AEF) 

commitments were not modeled, so there were no manpower adjustments required to 

account for the non-expeditionary nature of the RMLV fleet.  For both scenarios, the total 

Primary Aircraft Inventory (PAI) supported by the maintenance personnel was 16; 

however, in peacetime this PAI included both B-2s and T-38s while in wartime, the PAI 

consisted of an 8 PAI independent B-2 package and an 8 PAI dependent B-2 package 

(Air Combat Command, 2006: 6).  The most stringent requirement out of these scenarios 

determined the actual manpower requirement (Air Combat Command, 2006: 5).  Since 

the wartime scenario supporting 16 B-2s posed the most stringent requirement, there was 

no need to make adjustments to isolate the manpower requirements for the T-38 support 

provided under the peacetime scenario.  As a result, the RMLV fleet size of 6 was 

compared to the B-2 supported fleet size of 16, and the 6/16 ratio became part of a 

parametric relationship and sensitivity analysis established later in the Parametric 

Relationships section of this chapter. 
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 The peacetime scenario simulated three eight-hour shifts, five days per week, 

primarily in the production workcenters (Air Combat Command, 2006: 6).  The wartime 

scenario modeled two 12-hour shifts, seven days per week in all workcenters, based on 

the sortie rates in the War Mobilization Plan (Air Combat Command ND, 2006: 6).  

According to AF policy, these scenarios drive certain factor calculations that are used to 

modify manpower requirements.  The overload factor ensures that assets are utilized 

efficiently (Air Force, 2003: 14).  The man-hour availability factor is the average number 

of man-hours per month that personnel are available for primary duty, accounting for 

time spent each month on training, mandatory appointments, and other military 

requirements (Air Force, 2003: 13).  Additionally, LCOM assigned maximum direct 

workcenter utilization rates for both peacetime and wartime scenarios.  These factor 

calculations were assumed to be similar for the RMLV fleet, as they are AF-approved 

modifications, with the result that the LCOM manpower calculations were assumed to be 

fundamentally consistent with future RMLV workcenters.  However, an RMLV fleet that 

operates three eight-hour shifts, seven days a week does not align directly with either of 

these scenarios.  As a result, a shift factor was used in a parametric relationship and 

sensitivity analysis in the Parametric Relationships section of this chapter.   

Several assumptions factored into the LCOM calculation of daily flying and 

maintenance operations.  Sorties were programmed randomly throughout each 24-hour 

period (Air Combat Command, 2006: 15).  Maintenance workload data and planning 

factors were validated and verified during the LCOM planning stage (Air Combat 

Command D, 2006: 2).  Failure rates are annotated in the model as Maintenance Action 

Rates which reflect the mean sorties between maintenance actions, and were determined 
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by an earlier audit at Whiteman AFB (Air Combat Command, 2006: 2).  Spare parts 

availability was addressed in the model using a Total Non-mission Capable Supply rate 

of 7%, based on historical data (Air Combat Command, 2006: 11).  Additionally, the air 

abort rate was set at 2% within the model, based on historical data (Air Combat 

Command, 2006: 17).  Depot repair was included in the model, based on the three-level 

maintenance concept, with a turnaround time of 13 days (Air Combat Command, 2006: 

11).  Without specific operational, maintenance, and supply data for the RMLV, these 

assumptions were accepted as sufficient to determine RMLV manpower requirements. 

 Facilities and equipment are not part of the scope of this thesis; however, their 

impact on manpower was taken into consideration in the LCOM model.  LCOM modeled 

one engine test cell, located at Whiteman AFB, which was used for both peacetime and 

wartime workload (Air Combat Command 6: 11).  All other facilities and equipment 

were modeled according to current configuration and authorizations, which included an 

assigned hangar for each aircraft (Air Combat Command: 11).  As part of a study 

modeling projected resource utilization for varying numbers of annual RMLV launches, 

an approximate 1:1 ratio of fleet size to maintenance hangars was established as optimal 

to achieve required launch rates, and supports the assumption of individual vehicle 

hangars (Rooney, 2006: 8). 

 One factor of note for comparison to the RMLV is that the B-2 has an On-Board 

Test System (OBTS) which is supported by its own section, CIT/CEPS, under the 

Maintenance Group Orderly Room (Air Combat Command, 2006: 19).  The CIT/CEPS 

section for the B-2 is a variance to the manpower standard to provide “24-hour, 7 days a 

week software analysis support” to process and analyze OBTS data (Air Combat 
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Command, 2006: 29).  Assuming an IVHM system would be part of the RMLV design, a 

similar variance was applied.  

Workcenter Requirements. 

Table 11 summarizes, by squadron, the first step in the analysis that was 

performed to derive RMLV manpower requirements from the B-2 LCOM study results.   

Table 11.  RMLV Requirements Derived from 2005 B-2 LCOM Results 

Workcenter Areas of Responsibility 

LCOM Derived Total 
(accounts for workcenter, 
variance, and overhead 

adjustments) 

MXG Staff 
Commander, Support, Quality Assurance, Load 

Team Training and Evaluation 40 

MOS 
Analysis, Maintenance Operations Center, On-

Board Test System Analysis 84 
MXS Backshop Maintenance 501 

MUNS Weapons and Armament maintenance and support 164 
AMXS Flightline Maintenance and Weapons Loading 303 

MXG Total  1092 
 

Workcenters that did not apply to RMLV operations were removed.  These 

workcenters, and the justifications for omitting them, are listed at Appendix B.  Once 

these workcenters were removed, their respective overhead functions were adjusted 

proportionally.  Additionally, positive manpower variances awarded to the B-2 for 

reasons that were not applicable to the RMLV were subtracted.  Variance and overhead 

adjustments are recorded in Appendix C.  Further adjustments required to account for a 

number of differences between the RMLV and B-2 were established and analyzed in the 

Parametric Relationships section of this chapter. 

In summary, the 2005 B-2 LCOM analysis provided a starting point for 

establishing RMLV manning requirements.  Of the 1,536 personnel projected to support 

the B-2s under the scenario and assumptions of the study, 1,092 of them manned 
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workcenters that would also be required to support RMLV operations.  A review of the 

LCOM study identified that adjustments would be required for the number of shifts and 

the fleet size; these and other adjustments were developed and applied in the Parametric 

Relationships section of this chapter.  In the next section, the results of the LCOM 

analysis for the Predator were assessed to determine if an unmanned platform revealed 

any necessary adjustments to these workforce numbers. 

UAV Comparison Data 

 To address any available insights provided by an unmanned platform, the 2005 

LCOM report for the MQ-1 Predator was also reviewed and analyzed.  Compared to the 

B-2, the Predator exhibited a smaller, simplified maintenance organizational structure, 

shown in Figure 33. 

 

Figure 33. 57th MXG Predator Maintenance Group Organizational Structure 
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Scenario and Assumptions. 

The study addressed manpower requirements for wartime operations (Air Combat 

Command, 2005: 6), engaging two 12-hour shifts, seven days a week (Air Combat 

Command, 2005: 12).  As with the B-2, the modification factors driven by these 

operational conditions were assumed to apply accurately to the RMLV; however, 

adjustments would be required to account for eight-hour shifts.  AEF commitments were 

modeled, in the form of a continuous deployment of one system, which required five 

teams of personnel to support 120-day rotations every 20 months (Air Combat 

Command, 2005: 9).   This requirement was not applicable to the RMLV.  The model 

assessed support for three Predator Systems, each composed of 4PAI, 1 Ground Control 

Station (GCS), and 1 Predator Primary Satellite Link (PPSL) (Air Combat Command, 

2005: 6).  This total of 12 aircraft supported, along with additional ground systems, was 

also greater than the expected size of the RMLV fleet.   

 Predator sorties were scheduled at random on a 24-hour, 7-day schedule (Air 

Combat Command, 2005: 11).  The Predator executed two types of missions: 75% were 

Hunter-Killer sorties, for which the Predator was armed with Air-to-Ground Missiles, and 

25% were Intelligence Surveillance Reconnaissance sorties, for which the Predator was 

armed with a Synthetic Aperture Radar (Air Combat Command, 2005: 12).  While the   

B-2 organizational structure supported only maintenance and loading of weapons, the 

Predator’s radar support was assessed for the ability to provide a more accurate 

assessment of RMLV payload operations. 

Maintenance failure rates were determined based on Maintenance Data Collection 

data (Air Combat Command, 2005: 2), while “task times and crew sizes for both 
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scheduled and unscheduled maintenance were collected, verified and validated during a 

field audit at Indian Springs in January 2004” (Air Combat Command, 2005: 2).  Spare 

parts availability was addressed in the model using a Total Non-mission Capable Supply 

rate of 2.8%, based on historical data (Air Combat Command, 2005: 9).  Depot/contractor 

repair was included in the model with a turnaround time of 17 days (Air Combat 

Command, 2005: 9).  Additionally, LCOM modeled phase inspections at 100-hour 

intervals for the aircraft and 300-hour intervals for the engines (Air Combat Command, 

2005: 9).  Since the Predator System includes the GCS and PPSL, these equipment items 

were modeled as a constraint on Predator operation, and both scheduled and unscheduled 

maintenance for them was included in the Predator model (Air Combat Command, 2005: 

11).  The specialized transportation and handling equipment required by the RMLV 

would likely introduce a similar constraint to modeling RMLV operations.  

 Facilities and equipment are not part of the scope of this thesis; however, their 

impact on manpower was taken into consideration in the LCOM model.  LCOM assumed 

full availability of maintenance facilities and support equipment (Air Combat Command, 

2005: 9). 

 Finally, as the Predator squadron is supported by the 57th MXG at Nellis AFB, its 

manning requirements form additional authorizations within existing MXG workcenters 

supporting the Weapons School, Test, and Thunderbirds aircraft (Air Combat Command, 

2005: 29).  While the RMLV will likely operate out of Vandenberg or Cape Canaveral, 

with an established wing support structure, neither location has an existing MXG 

supporting other platforms. 
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Workcenter Requirements. 

Table 12 provides a summary of the LCOM study results for the Predator.  Again, 

workcenters that did not apply to RMLV operations were removed.  These workcenters, 

and the justification for omitting them, are listed at Appendix B.  The LCOM results were 

not further adjusted for variations or overhead, however, since the Predator was only 

being used as a comparison platform, and not as a baseline for determination of RMLV 

requirements.  As an unmanned platform, the composition of the Predator’s 

organizational structure had the potential to reveal significant differences from the B-2 

structure that would alter the magnitude or proportional contribution of individual 

maintenance workcenters.  The information in Table 12 was used to identify  

significant trends that might reflect the need to make adjustments to the manpower 

requirements identified in the previous section. 

Table 12.  Predator Maintenance Group Manning 

Workcenter Areas of Responsibility LCOM Derived Total (accounts 
for workcenter adjustments) 

MXG Staff Quality Assurance 6 

MXO 
Analysis, Maintenance Operations Center, Planning, 
Scheduling, Documentation, Training 8 

EMS Backshop Maintenance, Weapons maintenance, support 66 
AMXS Flightline Maintenance and Weapons Loading 196 
MXG Total   276 

 

The Predator required a much smaller maintenance support unit than the B-2, with 

a composition that was much heavier on AMXS support, and much lighter on MXG, 

MXS, and MOS manpower requirements than its crewed counterpart.  However, key 

differences beyond the unmanned nature of the vehicle drove the proportional 

dissimilarity.  First, the Predator was supported by an existing MXG that also supported 

other airframes.  As such, MXG, MXS, and MOS requirements were shared among 
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airframes, while the on-aircraft nature of the AMXS mission required dedicated 

manpower for each platform.  As established in Chapter VI, Analysis of Organizational 

Structure, the RMLV is likely to be supported by an MXG at Vandenberg or Cape 

Canaveral that will not support other reusable platforms; therefore, manpower savings 

will not be available through consolidating MXS, MXG, or MOS functions.  Secondly, 

the expeditionary nature of the Predator contributed to its increased AMXS requirements 

compared to the RMLV.  The Predator MXG organization was built to support five teams 

of personnel to meet AEF rotation requirements, resulting in an overall increase in 

requirements.  The RMLV will not be expeditionary, and will not justify these personnel 

increases.   

Initially, it seemed possible that maintenance support for installation of the 

Predator’s radar payload would more accurately reflect RMLV payload operations than 

the B-2’s weapons loading.  However, since a majority of the Predator’s missions require 

ordnance payloads as well, no significant difference was noted in the Predator weapons 

workcenter that would render it more applicable to RMLV payload support. 

In summary, the sources of the differences in Predator manning compared to B-2 

manning were not found to be applicable to RMLV operations.  As such, no 

modifications were made to the manning requirements identified in the previous section.  

However, the idea of modeling GCS and PPSL as constraints on Predator availability will 

apply to future research modeling the effect of GSE on the RMLV in MILEPOST. 

Parametric Relationships 

 In order to establish some useful parametric relationships to further refine the 

RMLV maintenance manpower estimates, this section focused on a series of adjustment 
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factors, each developed based on research and then subjected to sensitivity analysis.  

First, a parametric factor addressing the number of shifts was developed and assessed.  

Second, the proportion of maintenance man-hours spent on individual maintenance 

functions for the Shuttle was compared to comparable B-2 workcenter contributions to  

allow the organizational structure to be adjusted to more accurately reflect the 

proportional sizes of workcenters for space vehicle maintenance.  Third, a comparison of 

estimated surface area allowed direct adjustment to the Structural Repair workcenter, a 

critical component in both B-2 and RMLV maintenance.  Fourth, the relative complexity 

of a space platform in comparison to the B-2 was derived from a comparison of total 

workforce sizes, allowing the overall workforce magnitude to be adjusted appropriately.  

Finally, the total workforce was adjusted for varying fleet sizes.   

Number of Shifts. 

Due to the stringent requirement for a 24-hour response and turnaround time for 

the RMLV, this research assumed a manning requirement for three shifts performing 24-

hour operations seven days a week.  In order to derive the third shift requirements from  

the B-2 LCOM study results, a shift factor of 1.5 was applied to each workcenter.  Any 

fraction of a manpower position was rounded up.  The results are shown in Table 13. 

Table 13.  Adjustments for Number of Shifts Factor 

B-2 
Workcenter 2 Shifts (LCOM Total) 3 Shifts (LCOM Total * 1.5) 
MXG Staff 40 61 
MOS 84 129 
MXS 501 755 
MUNS 164 249 
AMXS 303 456 
MXG Total 1092 1650 
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Adding a third shift required a personnel increase of approximately 550 

personnel.  At this stage in the manpower assessment, the possible design points listed in 

Table 14 have been established in accordance with the experimental design process 

outlined in Chapter IV, Methodology. 

Table 14.  Design Points for Number of Shifts Adjustmen 

Design Factor 
Point Shifts 

1 2 
2 3 

 

Both two-shift and three-shift manning options were explored as part of sensitivity 

analysis for the parametric relationships to follow.   

Space Vehicle Maintenance. 

 A second concern in assessing parametric relationships for the RMLV lies in the 

fact that the distribution of maintenance man-hours to the subsystems on an aircraft may 

not be the same as the distribution of maintenance man-hours to the subsystems on a 

space vehicle.  For example, the specialized thermal protection structures on a space 

vehicle may result in a much greater percentage of total maintenance man-hours 

dedicated to structural maintenance that what is reflected in the B-2 organization.  As a 

result, this factor compared the relative contribution of individual workcenters to total 

Shuttle maintenance with the relative contribution of individual workcenters to total B-2 

maintenance in order to determine required mathematical adjustments. 

An analysis of B-2 manning requirements as determined by the 2005 LCOM 

study resulted in the workcenter contribution ratios identified in Table 15, calculated by 
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dividing the manpower requirement for the workcenter by the total MXG manpower.  A 

full account of LCOM workcenter contributions is available at Appendix D. 

Table 15.  B-2 Percent of Total Manpower by Workcenter 

Workcenter Area of Responsibility % Total 
Manpower 

MXG Commander, Support, Quality Assurance, Load Team Training, Evaluation 3.52% 
MOS Analysis, Maintenance Operations Center, On-Board Test System Analysis 5.60% 
MXS Backshop Maintenance 34.18% 
MUNS  Weapons and Armament maintenance and support 17.25% 
AMXS Flightline Maintenance and Weapons Loading 39.45% 

 

B-2 Maintenance is heavily focused on flightline operations, with backshop repairs 

forming the remainder of almost 75% of total maintenance requirements.  This is 

consistent with an operation that demands rapid turnaround times and also requires heavy 

maintenance of specialized LO structural components during mission down-times.  Only 

25% of the entire maintenance workforce is devoted to payload operations (munitions), 

analysis, command and control, on-board test system monitoring, quality assurance, and 

all other support operations.  The rest of this section was devoted to comparing these 

functional proportions with known ratios for Shuttle maintenance operations to assess 

similarities and differences.  Two sources of information were utilized for Shuttle 

maintenance data: an RMLV modeling effort that compiled Shuttle maintenance data to 

develop failure and repair rate distributions, and a NASA publication that collected 

detailed Shuttle maintenance data to identify design root causes of long turnaround times. 

Shuttle Maintenance Analysis for RMLV Modeling. 

In developing a discrete-event simulation of turnaround time and 

manpower requirements for military reusable launch vehicles, AF Aeronautical Systems 

Center (ASC) personnel compiled historical Shuttle maintenance data from STS-85 by 
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functional area in order to develop probability distributions for RMLV component 

failures and maintenance actions, shown in Figure 34 (Rooney, 2005: 2).  This data is 

summarized in Table 16 and is compared to B-2 workcenter percentages to compare the 

contributions of specific maintenance actions to overall support requirements. 

Table 16.  Shuttle % of Man-hours  
      by Activity 

 

 
Figure 34.  Shuttle Mx Data by Activity  
(Rooney, 2005: 2) 
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STR/Mech activities.  Shuttle Fluids maintenance, which includes “main engine 

pressurization and feed system, Orbital Maneuvering System and Reaction Control 

Systems (OMS/RCS), the Auxiliary Power Units (APU), actuation system, and Active 

Thermal Control System (ATCS)” (Rooney, 2005: 7), would be performed by the 

Electrics/Environmental section and Propulsion Flight workcenters.  Finally, 

Payload/Cargo functions are most closely approximated by the Munitions Squadron and 

the Weapons Loading section.  A detailed assessment of Shuttle maintenance disciplines 

and their aircraft maintenance counterparts, derived from LCOM and AF personnel 

guidance, is provided at Appendix E. 

The proportional Shuttle man-hour requirements, as summarized for 

projected RMLV maintenance, exhibited similar proportional characteristics to B-2 

maintenance; however, there were some striking differences.  Table 18 summarizes the 

comparison data, listing each Shuttle activity with its corresponding B-2 workcenters, 

and comparing the two to demonstrate the magnitude of differences. 

Table 18. Comparison of Shuttle and B-2 Maintenance Drivers 

Shuttle Mx Activity B-2 Workcenter Ratio Difference* 
TPS/Fluids/STR/Mech/
Avionics/Electric/ GSE AMXS/MXS 78.84%: 73.63% 5.21% (S) 

Fluids/Avionics/ Electric MXS Electrics/Environmental/ 
MXS Propulsion/MXS Avionics 32.85%: 5.92%  26.93% (S) 

Payload/Cargo MUNS/AMXS Weapons 16.79%: 22.13% 5.34% (B) 
TPS/STR/Mech MXS Structural Repair  43.07%: 11.91% 31.16% (S) 
Avionics/Electric MXS Electrics/Environmental/ 

MXS Avionics  8.03%: 3.12% 4.91% (S) 

GSE MXS AGE  2.92%: 6.45% 4.16% (B) 
*(S) indicates the Shuttle experiences a larger impact from the function; (B) indicates the B-2 
experiences a larger impact from the function 

 
First, an overall assessment of all AMXS- and MXS-aligned Shuttle functions (TPS, 

Fluids, Structures/Mechanics, Avionics/Electrics, and GSE) revealed that the proportion 
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was fairly similar, at approximately 75% of total maintenance requirements.  

Payload/Cargo operations and Shuttle GSE maintenance were within 5% of their B-2 

counterparts.   

An analysis of Fluid operations required combining the total with the 

Avionics/Electric activity because the Electronics/Environmental aircraft section and 

Propulsion Flight combine to perform the function of the Shuttle Fluid workcenter.  This, 

in turn, led to adding the B-2 Avionics Flight percentage to the aircraft proportion for a 

comparable workcenter total.  The result showed an impact from Fluids/Avionics/Electric 

operations on the Shuttle that was 27% greater than the parallel functions performed for 

the B-2.  By isolating the Avionics/Electric component and comparing it against the 

Avionics and Electrics/Environmental section of B-2 maintenance, it seemed that the 

greatest portion of this disparity was due to increased Shuttle requirements specific to 

fluids, rather than electrics or avionics.  This comparison will be examined in further 

detail in the next section, Shuttle Maintenance Analysis for Design Root Cause. 

As noted in Tables 16 and 17, TPS maintenance was the most significant 

contributor to Shuttle maintenance man-hours, while Structural Repair was the most 

significant single contributor to B-2 manpower requirements.  However, at almost 45% of 

total man-hours, the TPS/Structures contribution to Shuttle maintenance is 31% higher 

than the Structural Repair contribution to B-2 maintenance.  In order to observe the effect 

of Shuttle-like TPS on the B-2-based manpower structure, the following calculations 

were performed on the Table 13 manpower numbers to adjust the Structural Repair 

workcenter to reflect a 31% greater contribution to total maintenance man-hours: 
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a.  Workcenter calculations: 1.  The two-shift workcenter numbers resulted 

in a total of 184/1,092 personnel in the Structural Repair workcenter, accounting for 

16.85% of the total.  A 31% increase in this percentage resulted in a new manning level 

of 523 personnel.  2.  The three-shift workcenter numbers resulted in a total of 276/1,650 

personnel for these two workcenters, accounting for 16.73% of total manpower.  A 31% 

increase resulted in a new manning level of 788 personnel.   

b.  Overhead calculations: 1.  For two-shift operations, 339 additional 

personnel yielded a 70% increase over the previous MXS functional manning (MXS total 

– MXS/CC/CQ/MXM) of 486 personnel, which was distributed to the two MXS 

overhead sections.  The resulting 33% increase in the four-squadron total (350 additional 

personnel compared to 1,052) was applied to the MXG/CC workcenter.  2.  For three-

shift operations, 512 additional personnel compared to 732 previously assigned to 

functional workcenters also yielded a 70% increase, distributed to the two MXS overhead 

workcenters.  The resulting 33% increase in the MOS/AMXS/ MXS/MUNS total (529 

additional personnel compared to 1,589) was applied to the MXG/CC workcenter.  

c.  After addressing both two- and three-shift options, the resulting 

manpower requirements are displayed in Table 19.  Bold and italicized numbers indicate 

values that changed as a result of the application of this parametric adjustment. 

Table 19.  Adjustments for TPS Factor 

Workcenter 2 Shifts TPS Factor 1.31 3 Shifts TPS Factor 1.31 
MXG Staff 42 64 
MOS 84 129 
MXS 851 1284 
MUNS 164 249 
AMXS 303 456 

MXG Total 1444 2182 
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These totals showed a significant increase over the previous estimates of 

1,092 personnel for two shifts or 1,650 personnel for three shifts.  The magnitude of the 

manpower increase experienced by maintaining a Shuttle-like TPS system presents a 

strong argument for design alternatives that reduce thermal protection requirements.  

Additionally, the Structural Repair workcenter in the B-2 MXG baseline is already 

considerably larger than those in other maintenance organizations due to the LO support 

requirements.  In maintenance organizations supporting aircraft like the B-1, B-52, and F-

15E, where the Structural Repair workcenter accounts for less than 5% of total 

maintenance manpower (Air Combat Command, B-1, 2003: 104; Air Combat Command, 

B-52, 2003: 5-5; Air Combat Command, F-15E, 2003: 5-3); only the F-117 proportion, at 

9% approaches that of the B-2, again due to maintenance requirements for the stealth 

technology (Air Combat Command, F-117, 2001: 5-2).  As a result, minimizing or 

eliminating TPS requirements could result in a much smaller workcenter than indicated 

by the B-2 baseline.  Because research indicates that the RMLV will use reduced 

amounts of thermal protective material that are more durable and easier to repair and 

replace (Rooney, 2006: 4), these adjustments were not incorporated into further 

manpower calculations.  As a stand-alone calculation, the TPS factor was not entered into 

the design points structure. 

The next section will explore additional Shuttle maintenance data to 

further isolate significant workcenter differences.   

Shuttle Maintenance Analysis for Design Root Cause 

In order to more closely pinpoint these differences, the next comparison 

used more detailed Shuttle maintenance activity information, gathered for a NASA 
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technical publication addressing the design root causes for extended Shuttle turnaround 

times (McCleskey, 2005: iii).  This data, shown in Table 20, was collected across eight 

STS processing flows in 1997, and categorized by maintenance function in order to 

determine the Shuttle design characteristics that posed the greatest maintenance impact 

during turnaround operations (McCleskey, 2005: 19). 

Table 20.  Shuttle Percent of Man-hours by Activity (McCleskey, 2005: 19, 243-244) 

Workcenter 
 
Area of Responsibility 

% Total Man-
hours 

Structures, Mechanisms, 
& Vehicle Handling 

Orbiter Systems Observer, Quality 
Engineering, Orbiter Handling Equipment, 
Ground-Support Equipment (non-specific), 
Optical Systems, Mechanical Systems, 
Orbiter Structures, Pyrotechnic Systems 

33.69% 

Liquid Propulsion Shuttle Main Engines Engineering, Main 
Propulsion Systems, OMS-RCS 15.70% 

Thermal Management Freon and Water Cooling Loops, Tile, and 
Blankets 11.69% 

Power Management Orbiter Test Conductor, APU, Electrical 
Power Distribution, Orbiter Electrical, Fuel 
Cell Systems, Hydraulic Systems 

10.05% 

Safety Management & 
Control 

Purge, Vent & Drain Systems, Main 
Propulsion Systems, Main Engine Safety 
Purges 

8.31% 

Ground Interfacing 
Systems & Facilities Ground Support Equipment (non-specific) 7.26% 

Payload Accomodations Payload Installation/Removal Operations 4.08% 
Environmental Control 
& Life Support Orbiter Cooling and Life Support 3.65% 

Command, Control, & 
Health Management 

Orbiter Data Processing System, Orbiter 
Instrumentation Systems, Software 3.44% 

Communications Orbiter Communications Systems 0.87% 
Guidance Navigation & 
Control 

Guidance, Navigation, and Control Systems 0.62% 

 

Again, no direct correlations to aircraft maintenance workcenters were available, due to 

the significant overlap of functions within individual Shuttle workcenters.  However, 
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some proportional relationships were still derived related to groups of aircraft 

maintenance workcenters.  The B-2 workcenters listed in Table 21 were used for 

comparison to this data set, chosen as indicated by the assessment of Shuttle maintenance 

disciplines and their aircraft maintenance counterparts at Appendix E. 

Table 21. B-2 Workcenters for Comparison 

Workcenter Area of Responsibility 
% Total 

Manpower 
AMXS Weapons Loading Section 4.88% 
MOS CIT/CEPS 0.72% 
MOS Maintenance Operations Center Section 1.17% 
MOS  Research Engineer Section 0.65% 
MXG Quality Assurance Section 2.02% 
MXS Electrics/Environmental 0.78% 
MXS Avionics Flight 2.34% 
MXS Fuels Section 1.30% 
MXS Propulsion Flight 2.80% 
MXS Pneudraulics Section .59% 
MXS Metals Technology Section 0.59% 
MXS Structural Repair Section 11.91% 
MXS Survival Equipment Section 0.46% 
MXS  Aerospace Ground Equipment (AGE) Flight 6.45% 

 

The Structures, Mechanisms, and Vehicle Handling Shuttle activity was the most 

comprehensive of the workcenters, encompassing a wide range of MXS, AMXS, and 

MOS functions, including AGE.  As a result, it was combined with Ground Interfacing 

Systems & Facilities, primarily responsible for GSE, to establish an accurate total ratio.  

Additionally, Command, Control & Health Management, Communications, and 

Guidance, Navigation & Control were all combined due to their reliance on the 

Electrics/Environmental and Avionics aircraft maintenance workcenters. 
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Table 22 summarizes the comparisons between this set of Shuttle 

maintenance activities and corresponding B-2 maintenance workcenters. 

Table 22.  Comparison of Shuttle and B-2 Maintenance Drivers 

Shuttle Mx Activity B-2 Workcenter Ratio Difference* 

Structures, Mechanisms, 
& Vehicle Handling/ 
Ground Interfacing 
Systems & Facilities 

AMXS Weapons Loading/ 
MOS MOC/MXG QA/MXS 
AGE/MXS Avionics/MXS 
Metals Technology/MXS 
Structural Repair/MXS 
Survival Equipment 

40.95%: 29.82% 11.13% (S) 

Liquid Propulsion MOS Research Engineer/ 
MXS Propulsion 15.70%: 3.45% 12.25% (S) 

Thermal Management MXS Electrics/Environmental 
/MXS Structural Repair  11.69%: 12.69% 1.00% (B) 

Power Management 

MOS CIT/CEPS/ MXS 
Electrics/ Environmental/ 
MXS Fuels/MXS 
Pneudraulics 

10.05%: 3.39% 6.66% (S) 

Safety Management & 
Control 

No specific workcenter identified.  AF aircraft maintenance policy 
holds each individual and workcenter responsible for proper safety 

training, awareness, and procedures (Air Force, 2006: 44). 

Ground Interfacing 
Systems & Facilities MXS/AGE 7.26%: 6.45% 0.81% (S) 

Payload Accomodations AMXS Weapons  4.08%: 4.88% 0.80% (B) 
Environmental Control 
& Life Support MXS Electrics/Environmental 3.65%: 0.78% 2.87% (S) 

Command, Control & 
Health Management/ 
Communications/     
Guidance, Navigation & 
Control 

MOS CIT/CEPS/MXS 
Electrics/Environmental/ MXS 
Avionics 

4.93%: 3.84% 1.09% (S) 

*(S) indicates the Shuttle experiences a larger impact from the function; (B) indicates the B-2 
experiences a larger impact from the function 

 
Unfortunately, this data set was more challenging to analyze for individual B-2 

workcenters, since most Shuttle functions required multiple workcenter skills, and many 

workcenters appeared across multiple functions.   

However, one comparison was clear, and supported the finding in the 

RMLV modeling dataset.  Liquid Propulsion, a similar Shuttle maintenance requirement 
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to the Fluids function analyzed above, applied directly to MXS Research Engineer and 

Propulsion Flight and demonstrated a 12% greater impact on maintenance man-hours for 

the Shuttle than for the B-2.  Because this dataset allowed for more specific isolation of 

the appropriate B-2 workcenter, the MXS Propulsion Flight and MOS Research Engineer 

were increased to contribute 12% more to total RMLV manpower requirements, and 

overhead functions were adjusted accordingly.   

The only other major disparity was in the arena of Structures, 

Mechanisms, and Vehicle Handling.  However, this Shuttle function incorporated too 

many aircraft workcenters to determine a specific parametric relationship.  It was clear 

that an adjustment factor would be required for the Structural Repair workcenter, but this 

factor will be determined through an estimated size comparison in the Surface Area 

section.   

To summarize, a comparison of the relative contributions of individual 

Shuttle maintenance activities to overall man-hour requirements revealed a general 

similarity to the contribution of individual B-2 maintenance workcenters to overall 

manpower requirements.  However, significant dissimilarities were noted.  First, 

manpower implications of a Shuttle-like thermal protection system were assessed, 

yielding results that strongly supported minimizing TPS requirements.  Second, a 

disparity in percent contribution was noted in Shuttle Liquid Propulsion, corresponding to 

the B-2 MXS Propulsion Flight and MOS Research Engineer workcenters.  An 

adjustment factor of 12% was used to increase the size of the Propulsion Flight, 

according to the following calculations, which are presented in detail by workcenter in 

Appendix F: 
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a.  Workcenter calculations: 1.  The two-shift workcenter numbers result 

in a total of 53/1,092 personnel for these two workcenters, accounting for 4.85% of total 

manpower.  The adjustment will require these workcenters to account for 16.85% of 

1,092 personnel, which amounts to 185 total personnel.  The 132 additional personnel 

were divided among the workcenters using the formula: 132*(workcenter personnel/53).  

107 personnel were assigned to Propulsion Flight, and 25 were assigned to the Research 

Engineer.  2.  The three-shift workcenter numbers result in a total of 80/1650 personnel 

for these two workcenters, accounting for 4.85% of total manpower.  The adjustment will 

require these workcenters to account for 16.85% of 1,650 personnel, which amounts to 

279 total personnel.  The 199 additional personnel were divided among the workcenters 

using the formula: 199*(workcenter personnel/80).  162 personnel were assigned to 

Propulsion Flight, and 37 additional personnel were assigned to the Research Engineer. 

b.  Overhead calculations: 1.  For two-shift operations, in Propulsion 

Flight, 107 additional personnel compared to 486 personnel previously assigned to 

functional workcenters (MXS total – MXS/CC/CQ/MXM) yielded a 22% increase, which 

was distributed to the overhead workcenters.  For the Research Engineer, 25 additional 

personnel accounted for a 32% increase over 79 functional workcenter personnel (MOS 

Total – MOS/CC/CQ), which was applied directly to the MOS/CC/CQ workcenter.  The 

resulting total yielded a 13% increase for the MOS/AMXS/MXS/MUNS total (138 

additional personnel compared to the previous four-squadron total of 1,052), which was 

applied to the MXG/CC workcenter.  2.  For three-shift operations, in Propulsion Flight, 

162 additional personnel compared to 732 personnel previously assigned to functional 

workcenters (MXS total – MXS/CC/CQ/MXM) yielded a 22% increase, which was 
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distributed to the overhead workcenters.  For the Research Engineer, 37 additional 

personnel accounted for a 31% increase over 121 functional workcenter personnel (MOS 

Total – MOS/CC/CQ), which was applied directly to the MOS/CC/CQ workcenter.  The 

resulting total yielded a 13% increase for the MOS/AMXS/MXS/MUNS total (208 

additional personnel compared to the previous four-squadron total of 1,589), which was 

applied to the MXG/CC workcenter.  

c.  After applying sensitivity analysis to account for two- and three-shift 

options, the resulting manpower requirements are displayed in Table 23. 

Table 23.  Adjustments for Propulsion Factor 

Workcenter 2 Shifts, Propulsion Factor 1.12 3 Shifts, Propulsion Factor 1.12 
MXG Staff 41 63 
MOS 111 169 
MXS 612 923 
MUNS 164 249 
AMXS 303 456 
MXG Total 1231 1860 

 

Bold and italicized numbers indicate those values that changed as a result of this 

parametric adjustment being applied to the appropriate workcenters.  The net result was 

an increase of 139 personnel over two shifts or 210 personnel over three shifts.   

At this stage in the manpower assessment, the possible design points listed 

in Table 24 have been established in accordance with the experimental design process 

outlined in Chapter IV, Methodology. 

Table 24.  Design Points for Propulsion Adjustment 

Design Factor 
Point Propulsion 

1 2 
2 3 
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Because the Propulsion Factor does not have a range of values, design 

points are the same as those established by the Shift Factor, and the results of this 

adjustment were combined under the heading of Shift Factor for remaining calculations 

These numbers provided the basis for required adjustments due to differences in 

Surface Area, a relationship that will be explored in the next section. 

Surface Area. 

 This parametric relationship accounted for the difference in size between the 

RMLV and the B-2, which directly affected the manpower requirements for the 

Structural Repair function, a significant contributor to total maintenance manpower 

requirements.  Unfortunately, since the RMLV is still in the design phase, its exact size is 

not yet specified.  Additionally, vehicle measurements were provided in length, height, 

and wingspan; however, surface area was a more accurate factor for Structural Repair 

manning, since the structures under maintenance are three-dimensional.  As a result, 

vehicle surface area was approximated from dimensional information for the B-2 and 

Shuttle orbiter, roughly calculated based on the geometry of each platform, depicted in 

Figure 35.   

  

 

Figure 35.  B-2 and Orbiter Discovery (B-2 Spirit, 2007; STS-116, 2007) 

http://www.af.mil/factsheets/factsheet_media.asp?fsID=82
http://www.af.mil/factsheets/factsheet_media.asp?fsID=82
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The B-2 is essentially triangular in shape, and the surface area was estimated as the sum 

of the areas of two triangles, approximating the upper and lower surfaces.  The orbiter 

main body was roughly calculated by summing two triangles, determined by the upper 

and lower wing surfaces, with three rectangular planes described by the orbiter length and 

height.  Additionally, it was assumed that the RMLV will be smaller than the orbiter, so 

the resulting factor was rounded down.  Surface area calculations are summarized in 

Table 25. 

Table 25.  Comparison of B-2 and Orbiter Surface Area 

Platform Dimensions 
B-2 Orbiter-Endeavor 

Length  (Nose-to-Tail) 69 ft 122.17 ft 

Wingspan 172 ft 78.06 ft 

Height  17 ft 56.67 ft (diameter) 

Surface Area 
Calculation 2 (1/2) (Wingspan) (Length) 2 (1/2) (Wingspan) (Length) + 3 

(Height) (Length) 

Estimated Surface Area 11868 sq ft 30307 sq ft 

 

Based on these rough calculations, the orbiter surface area was approximately 2.6 times 

greater than the surface area of the B-2.  As a result, the B-2 Structural Repair section 

was doubled, and overhead support was adjusted accordingly.   

 While the Shuttle Orbiter provided the only operational reusable comparison 

platform for surface area, other reusable launch vehicles have reached a design stage that 

allowed for further surface area comparison.  Specifically, the Kistler K-1 fully reusable 

two-stage-to-launch vehicle was considered “the farthest along and the most technically 

feasible of the privately-funded commercial launch vehicle projects of the late 1990’s” 
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(Kistler K-1, 2007).  Although the program has stalled out, the development team had 

solidified the preliminary design and had begun development and testing. The first stage, 

depicted in Figure 36, was cylindrical in shape, 60.2 feet long, and 22 feet in diameter.  

 

Figure 36.  Kistler K-1 Conceptual Design (Kistler K-1—Summary, 2007) 

This equated to an estimated surface area of 4,200 square feet, approximately 35% of the 

estimated surface area of the B-2.  The RMLV, as currently envisioned, will be a vertical 

take-off, horizontal landing platform that will require aerodynamic features such as wings 

and tail stabilizers.  As such, it was not likely to be as small as the K-1 first stage, and the 

lower bound factor for the sensitivity analysis was rounded up slightly to 0.5. 

While a Surface Area Factor of 2 was the primary assumption of this research for 

remaining workforce calculations, a sensitivity analysis was conducted to account for 

Surface Area Factors of 0.5, 2, and 2.5.  The following calculations were applied to the 

Structural Repair workcenter to address differences in vehicle surface area: 

a.  Workcenter calculations: Both two- and three-shift workcenter numbers 

for Structural Repair were increased by factors of 0.5, 2, and 2.5. 

b.  Overhead calculations:  1.  For two-shift operations, a factor of 0.5 

resulted in a 16% decrease in the MXS (92 fewer personnel compared to 593 functional 

workcenter personnel); a factor of 2 yielded a 31% increase (184 additional personnel 
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compared to 593); and a factor of 2.5 yielded a 47% increase (276 additional personnel 

compared to 593); these adjustments were applied to MXS overhead workcenters.  The 

resulting changes of -8%, +16%, and +24% in the four-squadron totals (-96, +191, and 

+286 personnel compared to 1,190) were applied to the MXG overhead workcenter. 

c.  The resulting manpower requirements are shown in Table 26. 

Table 26.  Adjustments for Surface Area Factor 

Workcenter 
Propulsion 
Factor 1.12 Surface Area = .5 Surface Area = 2 Surface Area = 2.5 

  2 Shifts 
MXG Staff 41 40 43 43 
MOS 111 111 111 111 
MXS 612 516 803 898 
MUNS 164 164 164 164 
AMXS 303 303 303 303 
MXG Total 1231 1134 1424 1519 
  3 Shifts 
MXG Staff 63 62 65 66 
MOS 169 169 169 169 
MXS 923 779 1209 1351 
MUNS 249 249 249 249 
AMXS 456 456 456 456 
MXG Total 1860 1715 2148 2291 

 

At this stage in the manpower assessment, the possible design points listed 

in Table 27 have been established in accordance with the experimental design process 

outlined in Chapter IV, Methodology. 

Table 27.  Design Points for Surface Area Adjustment 

Design Factors 
Point Shift Surface Area 

1 2 0.5 
2 2 2.0 
3 2 2.5 
4 3 0.5 
5 3 2.0 
6 3 2.5 
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Further manpower calculations continued to assess both two- and three-shift options, but 

utilized the central value of 2 as the best assessment for the Surface Area Factor. 

Relative Complexity. 

 One of the most challenging differences to capture between B-2 and RMLV 

manning requirements was the greater vehicle complexity associated with a spacecraft.  

In order to establish a parametric relationship to approximate the net impact of this factor, 

it would be ideal to compare the total number of personnel performing ground support 

operations between subsequent Shuttle launches to the total number of personnel required 

for a B-2 turnaround.  However, this information was not available from the United 

Space Alliance (USA) due to proprietary concerns.  In its place, two estimations were 

performed.  First, the approximate total number of USA employees was compared to the 

B-2 Bomb Wing, which had a similar scope of responsibilities.  Second, the size of the 

Shuttle launch crew was used to estimate a total workforce requirement for comparison.   

United Space Alliance employs approximately 10,000 personnel (USA Quick 

Facts, 2007) responsible for Shuttle processing, maintenance, and operations to include: 

mission planning, logistics and supply chain operations, software engineering, ground 

system design engineering, launch and recovery operations, mission control, training, 

flight crew equipment preparation and maintenance, and integration (Capabilities, 2007).  

Similarly, the 509th Bomb Wing employs approximately 3,900 personnel (509th Mission 

Support Squadron, 2007), and is primarily responsible for all operations and maintenance 

activities supporting the B-2 (Whiteman AFB Mission, 2007).  In addition to orbiter 

support and maintenance, USA is also heavily engaged in support for the International 

Space Station, Extra Vehicular Activity Systems, and Ares I Crew Launch Vehicle Stage 
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1 studies (About USA, 2007).  The 509th Bomb Wing supports an AF Reserve A-10 unit, 

an Army National Guard Apache helicopter unit, and a variety of base operation and 

personnel support functions in addition to its primary mission (Whiteman AFB, Missouri, 

2007).  In general, USA and the 509th Bomb Wing each perform similar functions 

supporting a primary platform, with a scope of duties that broadens considerably beyond 

the primary mission.  This rough comparison resulted in the estimate that total Space 

Shuttle support requires approximately 2.5 times as many personnel as total B-2 support. 

A more detailed comparison began with the Space Shuttle launch team, and 

extrapolated total workforce numbers based on the following relationship: Shuttle Launch 

operations accounted for 16.26% of total maintenance man-hours for eight launches in 

1997 (McCleskey, 2005: 32).  The Space Shuttle launch team is “a highly organized and 

disciplined group of approximately 500 professionals” (The Space Shuttle Launch Team, 

2007), implying a total workforce size of approximately 3,075 personnel.  The 2005 

LCOM study estimated 1,536 personnel required to sustain B-2 operations under the 

modeled conditions.  As a result, it was estimated that Shuttle maintenance support would 

require approximately two times as many personnel as B-2 maintenance support. 

Again, due to the imprecise nature of these estimates, the manpower estimates 

accounting for vehicle complexity were performed at factors of 1.5, 2, and 2.5.  A lower 

complexity factor, such as 1.5, may result from the fact that the Shuttle was hampered by 

both advancing age and crew considerations, neither of which will apply to the RMLV.  

The following calculations were performed to assess Vehicle Complexity: 

a.  Workcenter and Overhead calculations.  For both two- and three-shift 

alternatives, using the manpower values derived at Surface Area Factor 2, each 
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workcenter was adjusted using the formula: Complexity Factor*(workcenter personnel).  

All fractions of a manpower authorization were rounded up. 

b.  The resulting manpower requirements are summarized in Table 28. 

Table 28.  Adjustments for Complexity Factor 

Workcenter Surface Area = 2 Complexity = 1.5 Complexity = 2 Complexity = 2.5 

  2 Shifts 

MXG Staff 43 66 86 109 

MOS 111 170 222 281 

MXS 803 1209 1607 2011 

MUNS 164 249 328 413 

AMXS 303 456 606 759 

MXG Total 1424 2150 2849 3573 

  3 Shifts 

MXG Staff 65 99 130 164 

MOS 169 257 339 426 

MXS 1209 1817 2419 3025 

MUNS 249 377 498 626 

AMXS 456 686 912 1142 

MXG Total 2148 3236 4298 5383 
 

The Complexity Factor established a wide range of manpower values, spanning more 

than 2,000 personnel between its lowest and highest settings.  As such, reductions in 

vehicle complexity have the potential to yield significant manpower savings.  The high 

magnitude of manpower requirements was mitigated in the next section, which addressed 

the RMLV’s smaller fleet size.   

At this stage in the manpower assessment, the possible design points listed in 

Table 29 have been established in accordance with the experimental design process 
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outlined in Chapter IV, Methodology.  While the Shift Factor continued to be assessed at 

two values, the Surface Area Factor was only assessed at its central value. 

Table 29.  Design Points for Complexity Adjustment 

Design Factors 
Point Shift Surface Area Complexity 

1 2 2 1.5 
2 2 2 2.0 
3 2 2 2.5 
4 3 2 1.5 
5 3 2 2.0 
6 3 2 2.5 

 

Remaining workforce calculations continue to address two- and three-shift 

alternatives, but assume the central Complexity Factor of 2, determined as the best 

estimate of this factor based on the research in this section. 

 Fleet Size. 

 The RMLV fleet size was assumed for the purposes of this research to consist of 

six boosters established as a requirement in the PRDA.  However, fleet size has been 

identified in previous research as a parametric variable whose optimal value varies based 

upon annual launch requirements, and fleet sizes varying from one to seven vehicles were 

assessed in resource evaluations (Rooney, 2006: 7).  As a result, this research conducted 

an assessment of manpower requirements for both two- and three-shift operations for 

fleet sizes ranging from one to seven vehicles using the following calculations: 

a.  Workcenter and Overhead calculations.  For both two- and three-shift 

options, each workcenter was adjusted using the formula: Fleet Size Factor*(workcenter 

personnel).  Fleet Size Factors were determined using the ratio of the number of RMLVs 
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(one to seven) to the number of B-2s supported in the LCOM manpower assessment (16).  

All fractions of a manpower authorization were rounded up. 

b.  The resulting manpower requirements are summarized in Table 30. 

Table 30.  Adjustments for Fleet Size Factor 

Workcenter 
Complexity 

= 2 
Fleet Size 

= 1/16 
Fleet Size 

= 2/16 
Fleet Size 

= 3/16 
Fleet Size 

= 4/16 
Fleet Size 

= 5/16 
Fleet Size 

= 6/16 
Fleet Size 

= 7/16 

  2 Shifts 

MXG Staff 86 7 12 18 23 28 34 39 

MOS 222 19 32 46 59 75 88 102 

MXS 1607 111 207 310 405 512 607 711 

MUNS 328 30 47 69 85 110 128 149 

AMXS 606 41 78 117 153 192 230 268 

MXG Total 2849 208 376 560 725 917 1087 1269 

  3 Shifts 

MXG Staff 130 10 18 26 34 42 50 58 

MOS 339 26 46 69 88 109 132 152 

MXS 2419 160 309 463 608 765 916 1068 

MUNS 498 40 69 100 128 163 194 223 

AMXS 912 60 117 174 230 288 344 402 

MXG Total 4298 296 559 832 1088 1367 1636 1903 
 

These results demonstrated that the reduced RMLV fleet size considerably reduced the 

manpower requirements calculated in this research.  Varying fleet size also yielded a 

wide range of workforce sizes, as manning requirements were highly dependent on the 

number of platforms supported.  For a six-vehicle fleet performing 24-hour operations, 

the total MXG value assessed in this chart was 1,636 personnel.  The Additional 

Sensitivity Analysis section of this chapter was used to shed further light on the range of 

RMLV manpower support requirements within the MXG. 
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 At this point, based on the best-estimate determinations of research data for each 

factor value, the design points in Table 31 have been sampled according to the 

experiment design outlined in Chapter IV, Methodology. 

Table 31.  Sampled Design Points 

Design Factors 
Point Shifts* Surface Area Complexity Fleet Size 

1 2 2 2 1 
2 2 2 2 2 
3 2 2 2 3 
4 2 2 2 4 
5 2 2 2 5 
6 2 2 2 6 
7 2 2 2 7 
8 3 2 2 1 
9 3 2 2 2 

10 3 2 2 3 
11 3 2 2 4 
12 3 2 2 5 
13 3 2 2 6 
14 3 2 2 7 

 

Design Point 13, representing three-shift operations of a six-ship fleet of RMLVs with 

Surface Area and Complexity Factors two times greater than the B-2, was the baseline 

manpower estimate of the MXG workforce size, totaling 1,636 personnel.  While the 

selection of these design points was supported by factor-level selections based upon step-

by-step research following the manpower assessment process, the combination of factors 

and levels encompassed a much wider range of design points than have been captured up 

to this point.  The complete set of design points is included at Appendix I.  In the 

Additional Sensitivity Analysis section, a random sampling of design points was 

conducted to address sample points not specifically covered by the research progression.  

First, a final stand-alone calculation assessed the impact of Integrated Vehicle Health 

Management (IVHM) Technology on the baseline manpower estimate. 



 

133 

 IVHM. 

The utilization of an Integrated Vehicle Health Management system, developed 

and coordinated into the early stages of the design process, has the potential to greatly 

reduce RMLV maintenance manpower requirements.  The C-17, for instance, utilizes an 

automated system that collects “engine health data, built-in-test data, and structural 

integrity data” that can be downloaded directly to ground systems for analysis and 

response (Boeing C-17, 2006).  The improved technology allowed the Dover AFB MXG 

to reduce its AMXS manning by approximately half (Losurdo, 2006).  The F-22 promises 

to improve automated maintenance capability even further with an even more extensive 

built-in-test capability that extends to individual line-replaceable units and an Integrated 

Maintenance Information System that integrates aircraft maintenance data with the 

required Technical Orders and forms to act as a single source of information for the 

maintainer (F-22 Raptor, 2006).  These features are projected to contribute to a 50% 

savings in total operational and support costs over the first 20 years of the platform’s life 

cycle (F-22 Raptor, 2006).  The potentially significant impact of IVHM on overall 

manpower requirements is depicted in Table 32, which applies varying degrees of 

IVHM-related manpower reductions to the baseline estimate of 1,636 personnel. 

Table 32. Adjustments for IVHM Impact 

Workcenter 
IVHM, No 

Impact 
IVHM, 10% 
Reduction 

IVHM, 20% 
Reduction 

IVHM, 50% 
Reduction 

MXG Staff 50 49 48 46 
MOS 132 132 132 132 
MXS 916 829 741 461 
MUNS 194 194 194 194 
AMXS 344 310 276 173 
MXG Total 1636 1514 1391 1006 
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Because an IVHM system reduces the requirements for troubleshooting and inspections, 

functions performed by the AMXS and MXS workcenters which comprise over 75% of 

the total MXG workforce, the potential manning impact of IVHM utilization is 

significant.  As such, investment in IVHM technology presents a design alternative that 

yields a high cost savings in manpower.  

 Additional Sensitivity Analysis. 

 A range of MXG manning requirements was assessed by setting factor 

combinations to their highest and lowest values, yielding the results shown in Table 33. 

Table 33.  Establishing an MXG Range 

Workcenter All Factors 
Low 

Fleet Size 6, All 
Others Low 

Three Shifts, 
Fleet Size 6,   

All Others Low 

Fleet Size 6,    
All Others 

High 

All Factors 
High 

MXG Staff 4 17 36 64 74 
MOS 16 68 101 165 191 
MXS 69 363 447 1274 1488 
MUNS 24 97 147 239 280 
AMXS 30 165 261 431 503 
MXG Total 143 710 992 2173 2536 

 

In addition to establishing the full range by setting all factors at their lowest and highest 

values, this calculation also established ranges of values for two major assumptions of 

this research:  a fleet size of six vehicles and a fleet size of six vehicles with three-shift 

operations.  While an MXG manned at 1,636 positions was considered to be the best 

estimate of manpower requirements, the size of the total workforce could range from 143 

personnel for a single vehicle to over 2,500 personnel for a fleet of seven.  For a six-

RMLV fleet, personnel requirements for the MXG could be expected to fall between 710 

and 2,173 total personnel, based upon research synthesizing Shuttle and aircraft 

maintenance requirements.  An MXG with 710 personnel would support two shifts of 
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operations.  The range of requirements for an MXG supporting three shifts of operations 

was 922 to 2,173 total personnel.   

In addition to these hand-selected factor-level combinations, six design points 

were sampled at random to generate additional data outside of those points considered 

relevant and interesting to this research process.  The results for the six additional 

samples are summarized in Table 34. 

Table 34.  Random Sample of Design Points 

Workcenter 

Shifts = 3;     
Surface Area = .5; 
Complexity = 2.5; 

Fleet Size = 4 

Shifts = 3;    
Surface Area = .5; 
Complexity = 1.5; 

Fleet Size = 4 

Shifts = 2;    
Surface Area = 2; 
Complexity = 2.5; 

Fleet Size = 2 

MXG Staff 40 32 15 
MOS 109 88 41 
MXS 496 393 259 
MUNS 163 128 57 
AMXS 288 230 98 
MXG Total 1096 871 470 

Workcenter 

Shifts = 3;    
Surface Area = 

2.5; Complexity = 
2.5; Fleet Size = 3 

Shifts = 2;    
Surface Area = .5; 
Complexity = 2; 

Fleet Size = 3 

Shifts = 3;    
Surface Area = 2; 
Complexity = 2.5; 

Fleet Size = 1 

MXG Staff 33 17 12 
MOS 86 46 32 
MXS 642 202 198 
MUNS 125 69 46 
AMXS 216 117 75 
MXG Total 1102 451 363 

 

When combined with the purposeful sampling of design points generated by this 

research, a regression analysis (Appendix J) yielded the following equation: 

Y = 354.63(Shifts) + 66.77(Surface Area) + 483.48(Complexity) + 217.02(Fleet Size) - 1941.76 
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The analysis of this equation revealed, however, that the Surface Area variable was not 

significant in the regression (p-value = .39).  The analysis was conducted again without 

the Surface Area Factor, resulting in the following equation: 

Y = 365.41(shift) + 513.15(complexity) + 217.95(fleet size) - 1913.36 

This equation can now be used to provide a manpower estimate for an RMLV MXG 

varying factor values. 

In the next section, AFMS calculations were applied to determine the manning 

requirements for the remaining RMLV ground support workcenters. 

Ground Support Workforce 

RMLV Logistics Support Functions. 

 Remaining RMLV ground support functions operating under the LRS, as 

identified in Chapter VI, Analysis of Organizational Structure, were addressed by four 

manpower standards: Base Supply, responsible for all spares support (Air Force, AFMS 

41A0, 2003: 1); Fuels Management, responsible for all petroleum, oil, lubricants, 

propellants, and cryogenics support (Air Force, AFMS 41D1, 2003: 1); Vehicle 

Maintenance, responsible for repair and maintenance of all vehicles and equipment (Air 

Force, AFMS 42B1, 2003: 1); and Vehicle Operations, responsible for all vehicle 

management and dispatch operations (Air Force, AFMS 42A1, 1997: 1).  The direct 

application of these standards requires historical data in each of the functional areas that 

is not yet available for the RMLV.  However, by applying parametric relationships to 

AFMS average man-hour calculations, the AFMS was executed to provide an estimate of 

ground support manning requirements.  Appendix G contains the calculation process, 
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average monthly man-hour summary, and applicable excerpt from the Standard 

Manpower Table for each AFMS. 

For all standards, a MAF of 149.6 and an overload factor of 1.077 were utilized 

where required.  These factors correspond to a normal 40-hour workweek (Air Force, 

AFI 38-201, 2003: 55).  While RMLV support will be a 24-hour operation, each shift will 

work a normal 40-hour week, and multiple shifts were captured within the AFMS for 

each individual workcenter.  This section applied AFMS calculations to evaluate the 

manpower requirements for each workcenter in turn, concluding with an overall 

assessment of the RMLV ground support workforce. 

 Base Supply. 

 The Base Supply workload factor is based on the average monthly number of 

transactions processed for due-out releases, establishing due-outs, issues from stock, 

receipts, turn-ins, and warehouse location changes (Air Force, AFMS 41A0, 2003: 4).  

This data would normally be available in a Consolidated Transaction History generated 

by the Standard Base Supply System database (Air Force, AFMS 41A0, 2003: 4).  Since 

historical data was not yet available for the RMLV, the average monthly man-hours 

established in the AFMS for Materiel Requests (due-outs), Materiel from Stock (issues), 

Materiel Receipt (receipts and due-out releases), and Materiel Storage (warehouse 

locations changes) were used to approximate the average monthly man-hours an RMLV 

Supply function would devote to these transactions (Air Force, AFMS 41A0, 2003: 52).   

Additionally, two variances were authorized to Whiteman AFB specifically to 

support the unique requirements imposed by Low Observable structural material.  These 

variances were added to the average monthly man-hours for supply transactions, and the 
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total was adjusted by the Complexity Factors identified in the previous section and a 

Fleet Size factor of 6/16.  This parametric relationship was used because the number of 

spare parts required is impacted by the complexity and number of supported platforms.  

Table 35 lists the steps used to apply the Base Supply AFMS (central values in bold). 

Table 35.  Application of Base Supply Manpower Standard 

Base Supply: AFMS 41AO 
Ref Action Calculation Derivation 
1.3.5, 
1.4 Man-hour Equation Y= .8529X X = average monthly number of 

specified supply transactions 

2.1 Step 1: Add 2 for flight supervision 2   

2.2 Step 2: Add 1 for flight 
administration 1   

2.3 Step 3: Add 1 for funds management 1   

2.4 Step 4: Determine after-hours 
support from Table 1 2.177 Assumes 1 flying squadron, 24-

hour operations 

2.5 Step 5: Determine average monthly 
transactions from CTH 

Not    
Available   

2.6 Step 6: Compute Monthly Man-hours 8581.52 

Total of average monthly 
process time for those processes 
assigned against the relevant 
transactions 

  Apply Parametric 
4827.11, 
6436.14, 
8045.18 

Adjusted by Vehicle Complexity 
(1.5, 2, 2.5) and Fleet Size 
(.375) parametric 

2.7; 
A4.16 

Step 7: Add applicable variance man-
hours 

5157.49, 
6766.52, 
8375.56 

+ 330.38 for Whiteman Low 
Observable Contract Support 

2.8 Step 8: Divide man-hours by MAF 

32.01,  
42.00,  
51.98 

 

MAF = 149.6, overload  = 1.077 

2.9 Step 9:  Add fixed manpower from 
steps 1-4 

38.187, 
48.17, 
58.157 

  

2.10 Step 10: Exercise Participation Credit Not 
Applicable 

In this research, RMLV exercise 
participation is not addressed. 

2.11 Step 11: Deployment Participation 
Credit 

Not 
Applicable RMLV is non-deployable. 

2.12 Step 12: Add results of steps 10 
and 11 to step 9, and round up. 49 Range is 39 to 59  
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The result of applying the AFMS for Base Supply operations was a workcenter 

staffed by 49 personnel broken down by rank and level of expertise in Table 36. 

Table 36.  RMLV Supply Support from Standard Manpower Table  
(Air Force, AFMS 41A0, 2003: 34) 

Title AFSC Rank 
Manpower 

Requirement 
Supply 021S3 Capt 1 
Supply 021S3 Lt 1 
Supply Management Supt 2S0XX CMSgt 0 
Supply Management Supt 2S0XX SMSgt 1 
Supply Mgt Craftsman 2S07X MSgt 2 
Supply Mgt Craftsman 2S07X TSgt 5 
Supply Mgt Journeyman 2S05X SSgt 12 
Supply Mgt Journeyman 2S05X SrA 15 
Supply Mgt Apprentice 2S03X A1C 12 
Total     49 

 

 Fuels Management. 

 The Fuels Management workload factor is based on the historical monthly 

average of fuel receipts and fuel transfers (Air Force, AFMS 41D1, 2003: 3-4).  Since 

this information was not yet available, the average monthly man-hours established in the 

AFMS for Receiving and Distribution (Air Force, AFMS 41D1, 2003: 38) were used to 

approximate the average monthly man-hours devoted to receipts and transfers.   

In order to correctly size the Fuels Management flight, a parametric relationship 

was developed comparing the fuel loads of the B-2 and the Shuttle Orbiter Main Engines.  

The solid-fuel second stage was not assessed because it would not require fuels personnel 

support.  The implications of a liquid-propellant second stage are addressed in Chapter 

VIII, Conclusions and Future Research.  The resulting parametric relationship was: 

 535,000 lbs (SSME): 200,000 lbs (B-2) = 2.675 
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Accordingly, the average monthly man-hours from the AFMS were increased by a factor 

of 2.675.  Sensitivity analysis was conducted using bounding values of 2 and 3.5.  Table 

37 summarizes the steps to apply the Fuels AFMS (central values are in bold). 

Table 37.  Application of Fuels Management Manpower Standard 

Fuels Management: AFMS 41D1 
Ref Action Calculation Derivation 
1.3.8, 
1.3.9.1
1.3.9.2 

Man-hour Equation 
Y = 948.758 + 
1053.6149X1   
+ 97.5441X2 

X1 = average monthly gallons of 
fuel received; X2 = average 
monthly number of fuel transfers 

2.1.1 Step 1: Determine number of shifts 3 3 Shifts for 24-hour operations 

2.1.2 Step 2: Determine type of delivery 
mode Truck 

All propellant deliveries at 
Vandenberg are by commercial 
trailer (30th Space Wing, 1998: 2) 

2.1.3; 
1.3.7 

Step 3: Determine fractional 
manpower from Table 1 based on 
steps 1 and 2 

5.33   

2.2.1-
2.2.5 

Determine values for X1 and X2 
based on historical data Not Available   

  
Sum average monthly receiving and 
distribution man-hours; Apply 
Parametric 

8426.20, 
11270.04, 
14745.85 

(Receiving (1535.59) + 
Distribution (2677.51)) * 2, 
2.675, 3.5 

2.2.6 Step 6: Calculate average monthly 
man-hours and divide by MAF 

62.67, 81.68,   
104.91   

Y=948.758 + 11270.04 (total avg 
monthly man-hours for receiving 
and distribution); MAF = 149.6 

2.3.1 Step 1: Add steps 3 and 6 68.00, 87.01,   
110.24   

2.3.2 Step 2: Add 2 for overhead mgt 70.00, 89.01,   
112.24   

2.3.3 Step 3: Add 1 for overhead admin 71.00, 90.01,   
113.24   

2.3.4 Step 4: Add 14 for Resource 
Control Center 

85.00, 104.01,   
127.24   

2.3.5 Step 5: Add 4 for Checkpoint 
Operation process 

89.00, 108.01,   
131.24   

2.3.6 Step 6: Add 4 for Quality Control 
and Inspection process 

93.00, 112.01,   
135.24   

2.3.7 Step 7: Add 2 for Fuels Flight 
Support process 

95.00, 114.01,   
137.24   

2.3.8 Step 8: Calculated Variance man-
hours divided by MAF 4.69 +701.76 for Cryogenics; MAF = 

149.6 

2.3.9 Step 9: Add Variance authorizations 
to step 7 

99.69, 118.70,   
141.93   

2.3.10 Step 10: Exercise Participation 
Credit N/A In this research, RMLV exercise 

participation is not addressed 
2.3.11 Step 11: Deployment Participation  N/A RMLV is non-deployable. 

2.3.12 Step 12: Add results of steps 10 
and 11 to step 9, and round up. 119  Range is 100 to 142 
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The Fuels Management flight supporting the RMLV fleet would be composed of 

119 personnel, with the rank and expertise levels described in Table 38. 

Table 38.  RMLV Fuels Support from Standard Manpower Table 
(Air Force, AFMS 41D1, 2003: 26) 

Title AFSC Rank 
Manpower 

Requirement 

Supply Mgmt Officer 23S4 Maj 1 

Supply Operations Officer 23S3 Capt  0 

Fuels Manager 2F000 CMSgt 1 

Fuels Superintendent 2F091 SMSgt 1 

Fuels Craftsman 2F071 MSgt 8 

Fuels Craftsman 2F071 TSgt 13 

Fuels Journeyman 2F051 SSgt 25 

Fuels Journeyman 2F051 SrA 35 

Fuels Apprentice 2F031 A1C 33 

Info Mgmt Journeyman 3A051 SSgt 1 

Info Mgmt Journeyman 3A051 SrA 1 

Total     119 
  

Vehicle Maintenance. 

 The Vehicle Maintenance workload factor is based on the total number of vehicle 

and equipment authorizations on base, which are typically documented in a Vehicle 

Authorization List (Air Force, AFMS 42B1,2003: 3).  Since this document has not yet 

been developed for the RMLV, the average monthly man-hours established in the AFMS 

for Refueling Vehicle and/or Equipment Maintenance and Repair, Special Purpose 

Vehicle and/or Equipment Maintenance and Repair, and General Purpose Vehicle and/or 

Equipment Maintenance and Repair (Air Force, AFMS 42B1,2003: 53) were used to 
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approximate the average monthly man-hours that will be devoted to RMLV fleet 

maintenance.  Man-hours for Fire Department Vehicles and 463L Materiel Handling 

Equipment Vehicles were not included in the calculation, as they are not specific to the 

RMLV, and were assumed to be supported by the existing Vehicle Maintenance structure 

at Vandenberg AFB or Cape Canaveral AFS.  Finally, monthly man-hours were adjusted 

by the range of Complexity Factors identified in the previous section and a Fleet Size 

Factor of 6/16.  This parametric was used because the number of vehicles and equipment 

required for ground support operations is impacted both by the number and complexity of 

the platforms supported. 

Additionally, three workcenters within Vehicle maintenance required independent 

manpower calculations.  Manning authorizations for the Maintenance Control and 

Analysis workcenter and the Material Control workcenter were derived from staffing 

patterns based on the total number of authorized vehicles (excluding equipment) on base.  

To apply these staffing patterns, the B-2 vehicle fleet size of 650 vehicles was used as a 

baseline estimate of total authorized vehicles (509th Logistics Readiness Squadron, 

2006), and was adjusted by the range of Complexity Factors and a Fleet Size factor of 

6/16 to approximate RMLV vehicle authorizations.  The result was a total of 488 

authorized vehicles as an input to the staffing pattern.  This application also assumed that 

the number of authorized and assigned vehicles were equal.  The final Vehicle 

Maintenance workcenter, Vehicle Maintenance Management, was determined from a 

staffing pattern based on the number of personnel authorized under the preceding 

calculations.   
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Table 39 summarizes the steps followed to apply the Vehicle Maintenance AFMS 

(central values are in bold). 

Table 39.  Application of Vehicle Maintenance Manpower Standard 

Vehicle Maintenance: AFMS 42B1 
Ref Action Calculation Derivation 

1.3, 1.4 Man-hour Equation Y = 4.6349X - 
1513.41 

X = total number of vehicle 
and/or equipment equivalents 
assigned to flight for 
maintenance 

Table 
A5.1 

Determine total average 
monthly man-hours 3881.50 Total of applicable avg monthly 

process times 

  Apply Parametric 
2183.34,   
2911.13,   
3638.91 

Complexity (1.5, 2, 2.5) and 
Fleet Size parametric (0.375) 

2.1 Step 1: Compute equation. 
669.93,     
1397.72,   
2125.50 

Y = adjusted avg monthly man-
hours - 1513.41 

2.2 Step 2: Determine variance 
man-hours Not   Applicable   

2.3-2.5 
Steps 3-5: Determine 
contractor, civilan, foreign 
national positions 

Not  Applicable   

2.6 Step 6: Divide by MAF, round 
up 5, 10, 15 Assume all military positions; 

MAF = 149.6 

2.7 Step 7: Add civilian and 
military requirements Not  Applicable   

2.8 
Step 8: Determine MC&A 
requirements using Tables 2 
and 3 

7 Authorized Vehicles = Assigned 
Vehicles = 650*2*0.375 = 488 

2.9 
Step 9: Determine Materiel 
Control requirements using 
Table 5 

3 Assigned Vehicles = 488 

2.10 
Step 10: Determine VM 
Management requirements 
using Table 1 

2 VM personnel = 10 + 7 + 3 = 20 

2.11 
Step 11: Determine total VM 
flight requirements, 
summing steps 6, 8, 9, and 10 

22  Range is 17 to 27 
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The Vehicle Maintenance Flight supporting RMLV operations would require 22 

personnel with the ranks and levels of technical expertise specified in Table 40. 

Table 40.  RMLV Vehicle Maintenance Support from Standard Manpower Table 
(Air Force, AFMS 42B1, 2003: 35) 

Title AFSC Rank 
Manpower 

Requirement 

Veh Mx Craftsman 2T370 MSG 1 

Veh Mx Craftsman 2T370 TSG 2 

Veh Mx Journeyman 2T35X SSG 6 

Veh Mx Journeyman 2T35X SRA 10 

Veh Mx Apprentice 2T33X A1C 3 
Total     22 

  

Vehicle Operations for Installations with Flying Missions. 

 The Vehicle Operations workload factor is based on total base military and 

civilian personnel authorizations (Air Force, AFMS 42A1, 1997: 2).  In order to derive an 

estimate of total base population including the RMLV ground support organization, the 

current military and civilian base populations of Vandenberg AFB and Patrick AFB were 

combined with the previously determined RMLV MXG, Base Supply, Fuels, and Vehicle 

Maintenance requirements.  Since supply, fuels, and vehicle maintenance functions are 

pre-existing at both locations, it was assumed that any flight management positions are 

already staffed, and only functional positions would be added to total flight 

authorizations.  As a result, all positions above the rank of MSgt were subtracted from 

those flights.  The resulting equations were: 

3,331 (military) + 1,459 (civilian) + 1,634 (MXG) + 46 (Supply) + 116 (Fuesl) + 22 

(VM) = 6608 (Friends of Vandenberg AFB, 2007) 
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Low value = 3,331 (military) + 1,459 (civilian) + 1,155 (MXG) + 37 (Supply) + 

97 (Fuels) + 17 (VM) = 6,096 

High value = 3,331 (military) + 1,459 (civilian) + 2,173 (MXG) + 54 (Supply) + 

139 (Fuels) + 27 (VM) = 7,183 

2,519 (military) + 1,071 (civilian) + 1,634 (MXG) + 46 (Supply) + 116 (Fuel) + 22 (VM) 

= 5408  (Hass, 2003: 183) 

Low value = 2,519 (military) + 1,071 (civilian) + 1,155 (MXG) + 37 (Supply) + 

97 (Fuels) + 17 (VM) = 4,896 

High value = 2,519 (military) + 1,071 (civilian) + 2,173 (MXG) + 54 (Supply) + 

139 (Fuels) + 27 (VM) = 5983 

The average of the base totals, approximately 6,000 total base personnel, was utilized to 

calculate Vehicle Operations manpower requirements, as outlined in Table 41.  Low and 

high averages of 5,500 and 6,580 were used to establish a range; central values are 

denoted in bold. 

Table 41.  Application of Vehicle Operations Manpower Standard 

    
Ref Action Calculation Derivation 

2.3, 
2.4 Man-hour Equation 

Y = 1232.91    
+ 1.01X 

X = total number of AF military 
and civilian authorizations, not 
including contractors 

3.1 Step 1: Determine base population 

5,500,       
6,000,        
6,580 

Average of Vandenberg/Patrick 
AFB populations with RMLV 
support manning added 

3.2 Step 2: Compute man-hours 

6787.91, 
7292.91, 
7878.71   

3.3 
Step 3: Divide by MAF, overload, 
round up 43, 46,49  MAF = 149.6, overload = 1.077 

3.4 
Step 4: Apply Variances and sum 
for total authorizations 46 Range is 43 to 49  
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The Vehicle Operations flight supporting the RMLV would require 46 personnel 

with the rank structure and skill levels assigned in Table 42. 

Table 42.  RMLV Vehicle Operations Support from Standard Manpower Table 
(Air Force, AFMS 42A1, 1997: 3) 

Title AFSC Rank 
Manpower 

Requirement 
Transportation 24T3 Capt 1 
Vehicle Ops Manager 2T100 CMSgt 0 
Vehicle Ops Superintendent 2T191 SMSgt 1 
Vehicle Ops Craftsman 2T171 MSgt 2 
Vehicle Ops Craftsman 2T171 TSgt 3 
Vehicle Ops/Dispatch Journeyman 2T151 SSgt 8 
Vehicle Ops/Dispatch Journeyman 2T151 SrA 15 
Vehicle Ops/Dispatch Apprentice 2T131 A1C 15 
Information Mgt Journeyman 3A051 SSgt 1 
Total     46 

 

Summary 

 In this chapter, RMLV ground support manpower requirements were determined 

using LCOM and AFMS calculation methods in accordance with AF policy.  

Calculations were largely based on B-2 support organizations, determined in Chapter VI, 

Analysis of Organizational Structure, to be the most appropriate comparison platform.  

Parametric relationships based on comparisons between B-2 and Shuttle data were used 

to adjust manpower calculations to appropriately account for the characteristics of a space 

launch vehicle, and sensitivity analyses were performed where possible to establish 

ranges of manpower values.   

Ground support operations for an RMLV fleet will require a Maintenance Group 

staffed with between 922 and 2,173 personnel for 24-hour operations, and supply, fuels, 

and transportation manpower totaling between 199 and 277 personnel.  Based on the best 

estimates of this research, the total support numbers include 1,636 MXG personnel and 
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236 LRS personnel.  Assuming that the RMLV operates out of Vandenberg AFB or 

Patrick AFB, where the Logistics Readiness Squadron and Safety office are already 

established, calculated supervisory positions in these areas would not be required.  This 

would result in a total impact to base population for RMLV ground support operations of 

1,864 additional personnel.  Chapter VIII, Conclusions and Future Research, will address 

the training and life cycle cost implications of these results, discuss the impact of design 

alternatives, and recommend areas for future research.   
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VIII.  Conclusions and Future Research 

By comparing current aircraft and Space Shuttle operations, it has been possible 

to estimate the size and organizational structure of an RMLV ground support workforce 

that will support the regeneration activities identified in the MILEPOST simulation 

model.  This organization is designed to be attached to existing operations at Vandenberg 

AFB or Cape Canaveral AFS, and will consist of a Maintenance Group modeled after   

B-2 operations and a parametrically sized Logistics Readiness Squadron workforce that 

can be incorporated into an existing squadron.  The anticipated organizational structure 

and manpower numbers, totaling 1,872 personnel, are depicted in Figure 37. 

 
 

Figure 37.  RMLV Ground Support Organization 

While these numbers represent the baseline estimate of total logistics manpower 

requirements arrived at by this research process, a range of maintenance workforce 

values was also assessed to address variation in RMLV design factors. 
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Figure 38 depicts the evolution of the maintenance workforce as it has been 

transformed from supporting a B-2 unit in order to support a future RMLV unit.  It is 

interesting to note the change in proportion of the individual maintenance workcenters.   

B-2 MXG Manning
MXG Staff

AMXS

MXS
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MXS
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Figure 38:  RMLV MXG Development 

The AMXS workcenter supporting an RMLV fleet will comprise a much smaller 

percentage of total maintenance operations, while the MXS workcenter will make up a 

much greater portion of the MXG.  The RMLV fleet is projected to be much smaller than 

the B-2 fleet, necessitating fewer flightline maintenance manning resources, while the 

increased maintenance requirements of the more complex propulsion system and 

structural elements require increased manning resources in the backshop.  In addition, the 

MOS workcenter grows slightly in proportion due to the involvement of the Research 

Engineer section in the engineering support element of Shuttle propulsion operations.  

Finally, the MUNS workcenter decreases slightly due to reduced maintenance 

requirements associated with second stages and payloads that are delivered ready-to-

integrate.  If an IVHM system is incorporated that yields a 50% improvement in 

maintenance capability, the MXS and AMXS squadrons reduce proportionately in 

1,536 1,636 1,006 
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comparison to the other workcenters, and total manpower requirements reduce 

considerably. 

Figure 39 depicts a range of MXG workforce sizes and compositions representing 

all factors at their lowest values, the lowest-value six-ship fleet supporting three-shift 

operations, and all factors at their highest values. 
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Figure 39.  MXG Manpower Range 

Without careful design consideration, a combination of large surface areas and significant 

complexity with a fleet size of six vehicles causes manpower requirements to inflate 

quickly.  However, by maintaining design factors like size and complexity at low levels, 

even a full-sized fleet operating three shifts can achieve lower maintenance manpower 

requirements than the baseline estimate. 

 Additionally, logistics support manpower requirements can be expected to vary 

between 199 and 277 personnel for a fleet size of six RMLVs.  These numbers are also 

affected by vehicle complexity and by size-related factors like fuel consumption. 

143 992 2,173 
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 Throughout the step-by-step manpower assessment and sensitivity analysis, it was 

clear that certain factors caused a greater impact on manpower numbers than others.  

Figure 40 provides a visual representation of the impact of combinations of tested factors 

on the manpower response variable. 
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Figure 40.  Impact of Test Factors on Manpower Requirements 

These comparisons show that while the number of shifts and the relative surface area of 

the RMLV have some impact on total manpower numbers, the more dramatic changes are 

caused by adjustments in fleet size, relative vehicle complexity, and the incorporation of 

varying levels of IVHM.  Design alternatives that address these factors will have the 

greatest impact on total logistics support manpower requirements. 

To conclude the evaluation of RMLV ground support operations, this chapter will 

address the life cycle and training cost implications of the projected manpower, the 
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impact of future design alternative decisions on this manpower estimate, and future 

research efforts that will further refine the logistics assessment of RMLV design 

candidates. 

Life Cycle Cost  

 The life cycle costs associated with logistics manpower support for the RMLV are 

comprised mainly of personnel and training costs.  AF Personnel Costs are derived from 

annual personnel budget planning factors, while estimates of the cost of training support 

are based on historical data regarding training support contracts established upon the 

introduction of new weapons systems into the AF inventory. 

AF Cost of Personnel. 

 The AF maintains an estimate of the average annual cost of personnel by rank, 

attached at Appendix H, organized under three pay rate categories: Standard Composite 

Pay Rate w/PCS, Accelerated Annual Pay Rate per Workyear, and Accelerated Annual 

Pay Rate (Direct Workhour).  Accelerated Annual Pay Rate (Direct Workhour) is to be 

used only when costing based on actual time worked.  Accelerated Annual Pay Rate per 

Workyear, which “represents the total cost of one full-time military member,” provides 

the most comprehensive estimate of annual cost and will be the pay rate used for this cost 

estimate (Air Force, AFI 65-503, 1994: 4).   

 The manpower output data generated by the LCOM report for MXG 

authorizations, which formed the basis for the RMLV MXG manpower estimate, is not 

detailed to the rank-level.  In addition, the use of parametric relationships to size the 

workforce would require a new LCOM simulation to generate the rank structure 

associated with the adjusted estimate.  As a result, average values for officer and enlisted 
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personnel were utilized, with the assumption that there are six total officer positions for 

the central value of the manpower estimate: two at the MXG, and one each at the MOS, 

MXS, AMXS and MUNS agencies, assigned against the squadron Commander positions.  

The AFMS documents used to calculate LRS agency requirements designated rank-

specific manpower structures, and specific annual cost data was assigned against these 

estimates.  A summary of personnel cost calculations is presented in Table 43.   

Table 43.  Annual Cost of Logistics Ground Support Personnel 

Org Rank 
Unit Cost 

(K) 
Qty    
Low 

Qty   
Avg 

Qty 
High 

Total Cost 
Low (K) 

Total Cost 
Avg (K) 

Total Cost 
High (K) 

MXG Officer $128.32 5 6 8 $641.60 $769.92 $1,026.56 

  Enlisted $67.46 1150 1630 2165 $77,579.00 $109,959.80 $146,050.90 

LRS O-4 Major $142.54 0 1 1 $0.00 $142.54 $142.54 

  O3 Captain $118.10 3 2 2 $354.30 $236.20 $236.20 

  O2 Lieutenant $99.36 0 1 2 $0.00 $99.36 $198.72 

  
E9 Chief Master 
Sergeant $117.81 1 1 2 $117.81 $117.81 $235.62 

  
E8 Senior Master 
Sergeant $101.73 3 3 3 $305.19 $305.19 $305.19 

  
E7 Master 
Sergeant $90.24 11 13 15 $992.64 $1,173.12 $1,353.60 

  
E6 Technical 
Sergeant $79.44 19 23 26 $1,509.36 $1,827.12 $2,065.44 

  E5 Staff Sergeant $69.49 45 53 57 $3,127.05 $3,682.97 $3,960.93 

  
E4 Senior 
Airman $58.65 64 76 87 $3,753.60 $4,457.40 $5,102.55 

  
E3 Airman First 
Class $50.91 53 63 82 $2,698.23 $3,207.33 $4,174.62 

Total (K) 1354 1872 2450 $91,078.78 $125,978.76 $164,852.87 
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According to this estimate, an average personnel budget of approximately $126 billion 

per year would be required to staff the RMLV logistics ground support organization.  By 

integrating the RMLV LRS agencies into an operational LRS at Vandenberg or Patrick 

AFB, the AF would save almost $1 billion (the sum of all LRS positions above the rank 

of Master Sergeant).  The bulk of the personnel expenditure is concentrated on the 

sizeable MXG organization; any design or operational considerations that reduce the 

MXG footprint for RMLV support will greatly benefit the overall cost of the program. 

Training Cost. 

The cost of training personnel in RMLV-specific maintenance and equipment 

operations will be a significant portion of total life cycle cost.  The AF currently has 

established training programs for each required AFSC; however, additional specialized 

training will be required to address the unique aspects of RMLV logistics support.   

Historically, the introduction of new platforms into the AF inventory has been 

met with different solutions.  When the B-2 became operational in 1993 (B-2 Spirit, 

2007), Structural Repair personnel at Whiteman AFB completed specialized training in 

maintenance of Low Observable materials upon their arrival to the unit.  This approach 

posed considerable challenges to the maintenance operation.  While the training program 

itself was based upon accurate contractor maintenance data, the opportunity to actively 

apply individual maintenance techniques was infrequent due to relatively low sortie rates 

and low occurrences of individual types of failure.  Additionally, the AF personnel 

rotation system resulted in high turnover rates and a high percentage of personnel with 

low experience levels at any given time.  This led to a Structural Repair workforce that 

experienced difficulty in achieving proficiency, which lengthened repair times, and drove 
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Whiteman AFB leadership to seek a training solution.  The solution manifested itself in 

the form of a partnership with Northrop Grumman, and a contract for production 

personnel, who had gained LO repair proficiency on the production line, to integrate into 

the Structural Repair organization to provide continuity and expertise (B-2 Visit, 2006).  

The dissimilarity of the RMLV from other AF weapons systems may necessitate a similar 

arrangement to address repair proficiency, and the cost of such a contract will need to be 

figured into total life cycle cost. 

 With the introduction of newer platforms like the C-17 and F-22, procurement of 

contracted maintenance support entails significant initial and recurring costs.  In support 

of the C-17, for example, the AF first awarded a comprehensive five-year maintenance 

support contract to United Industrial Corporation in 1997 (United Industrial Wins, 2007). 

Follow-on contracts continued with a $22.3 million contract to upgrade trainers to Block 

12 in 2001 (United Industrial Wins, 2007) and a $5.6 million upgrade contract in 2003, 

which brought the total contract value to $206.4 million over those first six years (United 

Industrial Corporation, 2007).  Upgrades are a continuing necessity, however, and in 

2005, the AF awarded a $70 million contract for the production of six new maintenance 

trainers to be used at new maintenance training facilities at Travis AFB, Hickam AFB, 

and Elmendorf AFB in 2008 (Air Force Buys, 2007).  Subsequently, in 2006, the AF 

awarded a $30.2 million contract for two additional trainers to be delivered in 2009 and 

2010, with an option for a $14.9 million aircraft engine maintenance trainer (United 

Industrial’s AAI Services Subsidiary Receives, 2007).    

The F-22A, approved for full-rate production in 2005 (F-22A Raptor, 2007), will 

be supported by maintainers trained in a newly-constructed $19.7 million training facility 
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beginning in 2008 (Officials Break Ground, 2007).  Follow-on costs for contracted 

training systems and upgrades are yet to be determined, but may easily follow the pattern 

established by the C-17.  In 2002, Boeing contracted with Link Simulation and Training 

for $55.9 million over two contracts to build full mission trainers, with the potential for 

executing an eight-contract series valued at over $200 million (Link Simulation & 

Training, 2007).  In 2006, a new contract was established with United Industrial 

Corporation for $48.5 million to produce maintenance training systems specific to 

landing gear, armament, and aft fuselage components (United Industrial’s AAI Services 

Corporation, 2007), and just this year, an additional $6.7 million contract was awarded to 

United Industrial for an upgraded landing gear trainer (United Industrial’s AAI Services 

Subsidiary Wins, 2007).  These costs occur in addition to the funding required for facility 

construction and modification, and represent a significant, on-going logistics cost 

consideration.   

To summarize, the cost implications for the RMLV ground support workforce can 

be expected to include approximately $630 billion in AF cost of personnel and well over 

$200 million in training support costs for the first five years of operation.  

Impact of Design Alternatives 

 As the design process for the RMLV matures, certain initial design alternatives 

can result in significant impacts to the manpower estimates derived in this research.  

Specifically, the choice of method for the RMLV to return to the launch-site will 

determine TPS requirements, which will directly impact the Structural Repair manpower 

support, the most significant single contributor to total manning requirements.  

Additionally, an Integrated Vehicle Health Management (IVHM) system will impact total 
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MXG manpower requirements, reducing overall manpower required for system 

troubleshooting.  Finally, decisions regarding the use of expendable or reusable second 

stages, and liquid or solid second-stage propellant, will significantly impact total 

manpower requirements.  

Jet Fly-Back vs. Rocket Boost-Back. 

 Current Shuttle TPS maintenance operations form a significant portion of total 

man-hours, and the impact of a Shuttle-like TPS system was examined in Chapter VII, 

Manpower Assessment.  This type of TPS requirement is consistent with a vehicle that, 

following separation, “aerodynamically decelerates to subsonic speeds, turns, and uses 

airbreathing jet engines to cruise back to the spaceport for a powered landing” (Snead, 

2006: 32).  Using this model of RMLV operations, known as the jet fly-back model, TPS 

maintenance requirements using current technologies would be very similar to those 

experienced by the Shuttle (Rooney, 2005: 9), and could result in significant increases to 

manpower estimates, particularly in the Structural Repair workcenter. 

 Another option under consideration for the RMLV return-to-launch-site activity 

involves turning the booster after separation, executing a controlled burn until the vector 

aligns with the launch site, and concluding with an unpowered reentry and glide back for 

horizontal landing (Hellman, 2005: 4).  The primary advantage to this approach, known 

as the rocket boost-back model, is that significantly less thermal protection would be 

required in comparison to the jet fly-back method (Hellman, 2005: 14).  Additionally, the 

vehicle would require more fuel to execute the second controlled burn, but would not 

require jet engine support (Hellman, 2005: 14).  This design alternative has the potential 
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to significantly decrease the MXG footprint of RMLV operations, particularly in the 

arena of Structural Repair. 

Structural Repair support is a significant contributor to total workforce 

requirements for both the B-2 and the Shuttle.  In fact, when the B-2 Structural Repair 

personnel implemented new technology for maintenance of their LO structures, the fleet 

experience a 15% increase in airframe availability and a 50% decrease in maintenance 

man-hours expended per flying hour (Boston, 2006).  Similarly, improved technologies 

or design alternatives affecting RMLV TPS requirements will significantly impact 

Structural Repair manpower requirement.  Additionally, since fuels and engine 

workcenters are impacted by return-to-launch-site alternatives, implementing a rocket 

boost-back design method would require recalculation of the manpower estimate.   

IVHM. 

 The type and extent of IVHM system utilized in the RMLV has the potential to 

impact total MXG manning numbers.  The manpower estimate in this research is based 

on the B-2’s OBTS, which collects maintenance indicator data during flight operations 

for analysis and action on the ground (Air Combat Command, 2006: 29).  However, 

integrated health management systems as envisioned for developing aerospace platforms 

extend beyond simply collecting diagnostic information, and offer prognostic assessment 

and automated inspections (Ofsthun, 2002: 22).  An IVHM system performing the full 

range of functions would reduce the number of AMXS and MXS personnel required for 

trouble-shooting and inspections, and would require recalculation of the manpower 

estimate. 
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Second Stage Alternatives. 

 This research has been based on the assumption that the RMLV will be a hybrid 

launch vehicle, with a reusable first stage and an expendable second stage.  As such, the 

manning requirements for the second stage are combined with the manning requirements 

for the payload, and treated as a workcenter that essentially stores, inspects, and then 

integrates the second stage and payload in the same manners as the B-2 Munitions 

Squadron handles its weapons and armament.  A reusable second stage would effectively 

double most workcenter requirements, adding another vehicle that requires the complete 

range of recovery, maintenance, and pre-launch operations, while the workforce 

responsible for payload storage, inspection, and integration would decrease slightly. 

 Given an expendable second stage, the choice between liquid and solid propellant 

remains a significant factor in manpower requirements.  Current manpower requirements 

are based on liquid fuel support only for the first stage of the RMLV, while the second 

stage is assumed to be delivered ready-for-use, essentially modeled after a solid-

propellant system.  If an expendable stage is chosen that requires liquid propellant and 

on-site fueling, the fuels support for storage and distribution would double. 

 In summary, manpower determinations in this research are modeled on an RMLV 

with a reusable first stage utilizing a combination of rocket and jet propulsion, and an 

expendable second stage delivered and stored ready-for-use.  Some degree of IVHM is 

included in the manpower estimate, modeled on the B-2 experience with its OBTS.  

Different design decisions in these areas will have a significant impact on the manpower 

estimates, and results will have to be recalculated.  In the next section, opportunities for 

future research will be discussed that will allow timely and accurate recalculation to 
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account for these and other alternative decisions that will occur throughout the design 

phase. 

Future Research 

 The primary purpose of this research was to provide foundational information that 

future researchers can use to improve the manpower fidelity of the MILEPOST model.  A 

crucial aspect of future research will be the ability to transform the manpower estimate 

derived in this thesis into a MILEPOST resource allocation method, resulting in the 

capability within MILEPOST to generate manpower support estimates for different 

design alternatives.  The AF LCOM manpower tool provides insight on the process of 

allocating maintenance resources to individual simulation activities.  Additionally, to 

round out the fidelity of the MILEPOST model, future research will be required to 

address similar estimation and allocation projects for facility, equipment, and materiel 

resources.  MILEPOST will then provide a comprehensive model that allows the 

generation of turnaround time and total resource consumption based on scenarios 

specifying design considerations and operational requirements. 

 MILEPOST activities have been designated in the manner that best reflects 

ground processing activities that affect turnaround time.  These activities do not lend 

themselves to a one-to-one correspondence with manpower, as activities often require 

multiple personnel, and personnel from multiple AFSCs.  Additionally, AF maintenance 

activities are organized by Work Unit Code (WUC), a five-digit designator that describes 

the “sub-system problems and repair actions associated with a piece of equipment or a 

system” (Air Force, AFI 21-103, 2005: 46).  WUCs allow maintenance organizations to 

identify specific components that are causing system downtime, and will not correspond 
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directly either to MILEPOST activities or to specific manpower requirements.  Therefore, 

in order to allocate the logistics manpower resources identified in this research to 

individual MILEPOST activities, a conversion process will have to be developed.  This 

conversion process can be based upon the LCOM solution to allocating maintenance 

manpower resources. 

 LCOM requires users to submit historical maintenance data to derive input 

information for the simulation.  This historical data for existing airframes is easily 

extracted from the Core Automated Maintenance System, and is converted by the LCOM  

Data Preparation Subsystem and Data Structuring Subsystem into the format depicted in 

Figure 41. 

JCN WUC TAKEN DATE START STOP TIME  CREW REASON 

171152 46A00 Y 6017 900 1130 2.5HR 2 Troubleshooting 

171152 24AD0 S 6027 1530 1730 2.0HR 2 Remove for Access 

171152 46ADE R 6028 800 1830 10.5HR 2 Remove/Replace 

171152 24AD0 S 6028 2230 30 2.0HR 2 
Reinstall After 

Access 

171152 11GSE Q 6029 230 300 0.5HR 2 Close after Access 

171152 46A00 X 6029 330 530 2.0HR 2 Functional Check 
Mean Time To Repair 10.5hr (0800-1830) 
Mean Corrective Time 19.5hr (2.5+2.0+10.5+2.0+0.5+2.0) 
Mean Discrepancy Length 288.5hr (0900 on 6017 to 0530 on 6029) 
• DPSS converts MDC action code Y to LCOM Action Code T – So  
LCOM task T46A00 is 2.5hr with a crew of 2 
• DPSS sums and converts MDC action codes S to LCOM Action Code  
X – So LCOM task X24ADO is 4.0hr with a crew of 2 
• DPSS sums and converts MDC action codes Q+R to LCOM Action Code  
R – So LCOM task R46A00 is 11.0hr with a crew of 2 
• DPSS Converts MDC action code X to LCOM Action Code V - So LCOM  
task V46A00 is 2.0hr with a crew of 2 
 

Figure 41.  Maintenance Data Collection Format  
(Aeronautical Systems Center, 2004: 62) 
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The activities listed above constitute one complete repair activity, or task, from start to 

finish, assuming there are no time gaps between subsequent tasks (Aeronautical Systems 

Center, 2004: 64).  Each action taken code is converted into an LCOM activity code with 

its associated WUC.  For the maintenance actions listed above, the LCOM series of tasks 

is F46A00, T46A00, X24AD0, R46A00, and V46A00 (Aeronautical Systems Center, 

2004: 64)  This series within LCOM generates a total repair time for a crew of two for 

this repair activity based on corresponding aircraft maintenance activities and their 

historical completion times.  If the simulation is run with unlimited resources, the total 

task time for the sequence should equal the mean corrective time, 19.5 hours 

(Aeronautical Systems Center, 2004: 65).  If constraints on personnel, facilities, and 

equipment are introduced series time will increase, approaching 288.5 hours as resources 

are constrained to match the exact availability at the location that generated the 

maintenance data (Aeronautical Systems Center, 2004: 65).   

To accomplish a similar function in MILEPOST, future researchers will first need 

to establish a list of MILEPOST tasks and corresponding MILEPOST Action Codes, 

compiled based on the activities listed in the MILEPOST model.  Subsequently, 

researchers will need to establish a WUC listing to differentiate among workcenters 

performing the same Action Code on different systems.  For example, troubleshooting in 

the engine backshop will need to be distinguished by WUC from troubleshooting during 

aircraft recovery.  The workcenter identification portion of the WUCs will be based upon 

the required workcenters identified in the logistics support organizational structure 

identified in this research.  Finally, each Action Code/WUC combination utilized in the 

sequence of MILEPOST regeneration activities will require a repair time assignment 
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based on a given crew size, determined by more detailed research based on aircraft and 

Shuttle data.  At this point, the Action Code/WUC assigned to each MILEPOST 

regeneration activity will have associated manpower resources, allowing users to 

determine total manpower support associated with a given vehicle design candidate.         

In order to provide more detailed manpower information, each LCOM task is 

assigned specific AFSCs, as shown in Figure 42. 

 

Figure 42.  Task Report with AFSC by Quantity  
(Aeronautical Systems Center, 2004: 214) 

AFSCs assigned for the purposes of the LCOM simulation may or may not correspond to 

AF standard AFSCs.  For example, in the Joint Service FX-99 Generic Fighter Model 

described in the User’s Manual, all personnel are consolidated under six generalized 

AFSCs, created based upon the location of maintenance; for example, 1FLTL is the 

AFSC for all flightline maintenance (Aeronautical Systems Center, 2004: 460).  Alternate 

crew configurations may be identified for the same task, with alternate completion times 

if necessary; for example, a less-experienced crew assigned to the same activity could 

result in a longer repair time (Aeronautical Systems Center, 2004: 69).   

In order to utilize this method in MILEPOST, future researchers will need to 

designate AFSCs against each MILEPOST Action Code/WUC combination utilized by 
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the regeneration activities.  This research provides a comprehensive pool of AFSCs that 

will be utilized; future research will need to determine, based on aircraft and Shuttle data, 

the number of personnel within a given AFSC that are required by each task.  At this 

point in the research, each MILEPOST regeneration activity will be allocated AFSC-

specific resources, enabling the simulation to provide detailed workforce requirements as 

an output, and allowing constraints to be adjusted by AFSC.  This research may begin 

with generalized AFSC assignments, as depicted in the LCOM FX-99 Model, that will 

become more refined as additional maintenance data becomes available.  

A similar research process will be required for facilities, equipment, and materiel 

resources such as propellant and spares to first estimate baseline requirements and then 

assign them as allocable resources for MILEPOST simulation runs.  Since a level of 

depot maintenance was assumed in the manpower analysis, based on the three-level 

maintenance assumptions in the B-2 LCOM manpower data, future research will also 

need to address the depot maintenance manpower requirements to support a fleet of 

RMLVs.  Finally, an analysis of basing should be conducted to determine the optimal 

basing location for the RMLV fleet. 

Summary 

 The MILEPOST model provides a simulation framework to estimate regeneration 

times for Reusable Military Launch Vehicles with varying design characteristics.  While 

critical, regeneration time is not the only factor under consideration in the design phase of 

a weapons system.  Logistics support requirements comprise a significant portion of total 

life cycle costs; as a result, this research set out to determine a baseline estimate of the 

logistics ground support workforce requirements for the RMLV, given current design and 
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operational parameters.  It has been determined that a fleet of six RMLVs, operating out 

of either Vandenberg or Patrick AFB, can be adequately supported under the existing 

AFSC structure with approximately 1,870 personnel aligned under a Maintenance Group 

and Logistics Readiness Squadron consisting of Base Supply, Fuels, Vehicle 

Maintenance, and Vehicle Operations Flights.  The estimated cost of personnel and 

training for this workforces is $630.2 billion for the first five years. 

 As a baseline estimate, personnel numbers and total cost will vary considerably as 

the RMLV’s design and operational characteristics are finalized.  The MILEPOST model 

was designed as a method to account for these changes and provide updated regeneration 

time data as scenario factors and design characteristics are adjusted.  As a result, the 

primary purpose of establishing this baseline estimation was to identify workcenter and 

AFSC resources that can be allocated within MILEPOST using a method modeled after 

the LCOM simulation process.  Future research based on this information will result in an 

RMLV simulation model that addresses both manpower and regeneration time estimates 

for a variety of RMLV design candidates engaged in a range of operational scenarios. 
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Appendix A.  MILEPOST AFSC Matrix 
 

Recovery Operations (Martindale, 2006) 
Landing, Taxi, and Initial Safing (0)  
Activity Platform AFSC 
Landing, Wheels Stop  N/A N/A 
RMLV Taxi to Recovery Apron F-16 2AXXX 
Reaction Jet Drive and Drag Chute Safing Shuttle shortfall 
APU Shutdown Not Automatic Shuttle 2A6X6 

APU Shutdown   Shuttle 2A6X6 
APU Shutdown Automatic Shuttle 2A6X6 
LOX Safing Shuttle 2A6X4 
Does Design Include Hypergolics?  Yes (1) Shuttle 2A6X6  

Hypergolic Detection Self-Contained on 
RMLV?  Yes Shuttle 2A6X6   

Ground Crew Receives Safety Self-
Assessment Shuttle 2A6X6   

Pass Safety Assessment Shuttle 2A6X6   
Hypergolic Detection Self-Contained on 

RMLV?  No Shuttle 2A6X6 

Forward Safety Assessments Shuttle 
1S0X1, 
2A6X6 

Aft Safety Assessments Shuttle 
1S0X1, 
2A6X6 

Pass Safety Assessment Shuttle 
1S0X1, 
2A6X6 

Doesn't Pass Safety Assessment Shuttle 
1S0X1, 
2A6X6 

Mx Delay Safety for Haz Gas Shuttle 
1S0X1, 
2A6X6 

Does Design Include Hypergolics?  No (2) Shuttle N/A 
Maintenance Actions Required to Prepare RMLV for Transportation (3)  
Activity Platform  AFSC 
Send to Haz Gas Purge Shuttle shortfall 

Haz Gas Purge Req'd?  Yes Shuttle shortfall 
Connect Haz Gas Monitor and Purge Ducts Shuttle shortfall 
Initiate Haz Gas Purge and Monitor Shuttle shortfall 

Haz Gas Purge Req'd?  No Shuttle  N/A 
Send to Coolant GSE Shuttle shortfall 

RMLV Designed with Hot Structures?  Yes Shuttle shortfall 
RMLV Designed with Hot Structures?  No Shuttle shortfall 

Connect Coolant GSE Shuttle shortfall 
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Secure NH3 Coolant, Activate Ground 
Cooling Shuttle shortfall 

Send to Lock Pins and Vent Plugs F-16 2AXXX   
Install Ground Lock Pins and Vent Plugs F-16 2AXXX   

Send to Inspection and Configuration   2AXXX   
Superficial TPS and Debris Inspection Shuttle 2AXXX   
Configure for Handover to Spaceport Ground 

Control Shuttle 2AXXX   
External Stores and Final Safety Call (4)  
Activity Platform  AFSC 
Can RMLV Return with External Stores?  Yes F-16 2WXX1  

Is RMLV Returning with External Stores?  Yes F-16 2WXX1  
Position External Store GSE F-16 2WXX1   
Separate External Stores F-16 2WXX1   
Load and Remove External Stores F-16 2WXX1   

Can RMLV Return with External Stores?  No Shuttle N/A 
Is RMLV Returning with External Stores?  No Shuttle N/A 

Safe to Proceed with Total Downgrade? No   1S and 2A 

Mx Delay for Safety Downgrade   1S and 2A 
      
Send to Safing Sequence (5)   N/A 
Safing Sequence (6)  
Activity Platform  AFSC 
OMS RCS System Safing Shuttle 2A6X1 
Tank Vent RMLVME Shuttle shortfall 
MPS Configuration Shuttle 2A6X1 

Does Design Include Hypergolics 2?  Yes Shuttle 

2A6X6 
(EPU on the 
F-16) 

Hydrozine Circulation Pump Safing Shuttle 

2A6X6 
(EPU on the 
F-16) 

Hypergolic Detection Self-Contained on RMLV 
2?  Yes Shuttle 

2A6X6 
(EPU on the 
F-16) 

Stow Air Data Probes Shuttle 

2A6X6 
(EPU on the 
F-16) 

Does Design Include Hypergolics 2?  No Shuttle N/A 
Hypergolic Detection Self-Contained on RMLV 

2?  No Shuttle N/A 
INS Recorder and CW Safing Shuttle 2A5X3 
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RMLV Preparation for Transportation (Simultaneous with Safing 
Sequence) (6)  
Activity Platform  AFSC 
Send to Vacuum Vent Duct Inerting Shuttle shortfall 

Vacuum Duct Inerting Required?  Yes Shuttle shortfall 
Initiate Vacuum Duct Inerting Shuttle shortfall 

Vacuum Duct Inerting Required?  No Shuttle N/A 
Send to Protective Cover Installation Shuttle 2AXXX  

MPS and RMLV Protective Covers Required?  
Yes Shuttle 2AXXX   

Install MPS and RMLV Protective Covers Shuttle 2AXXX   
MPS and RMLV Protective Covers Required?  

Yes Shuttle 2AXXX   
Send to Position Tow Coupling Shuttle 2A6X2  

Position Hookup Tug Shuttle 2A6X2  
Monitor On-Board Systems Shuttle 2A6X2  

Final Tow Preparations (7)  
Activity Platform 2A6X2  
Attach Tow Tug to RMLV Shuttle 2A6X2  
Check Tow Tug Connections Shuttle 2A6X2  
Final Tow Preps Shuttle 2A6X2  
Towing Operations (8)  
Activity Platform  AFSC 
Tow RMLV Shuttle 2A6X2  
RMLV Exit to Mx Shuttle 2A6X2  

 
Ground Maintenance Operations (Pope, 2006) 

Disconnection from the Launch Vehicle 
Activity Platform AFSC 

Connect to Stage 1 
aircraft (B-
2) 2A6X2 

Transport to Mx Bay aircraft 
2A6X2, 
2AXXX 

Position Stage 1 in Mx Bay aircraft 2AXXX 
Grounding Procedures aircraft 2AXXX 
Disconnect from Stage 1 aircraft 2A6X2 
Diagnostics 
Activity Platform AFSC 
Interrogate Mx Reporter aircraft 2A5X3 
Position Maintenance Stands aircraft 2AXXX 
Electrical Connections 2 aircraft 2AXXX 

Battery Testing aircraft 
2A6X6 
(E&E) 
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Batteries Good?  No aircraft 
2A6X6 
(E&E) 

Replace Batteries aircraft 
2A6X6 
(E&E) 

Batteries Good?  Yes aircraft 
2A6X6 
(E&E) 

Charge Batteries aircraft 
2A6X6 
(E&E) 

MA Parallel Processes N/A N/A 
Avionics Testing aircraft 2A5X3  

Flight Controls aircraft 2A5X3  
Sensor Equipment aircraft 2A5X3  

Upper Stage Testing 
Activity Platform AFSC 

Upper Stage Electrical Connecting Point Testing Shuttle 
2A6X6 
(E&E) 

Parallel Process 1 N/A N/A 
Parallel Process 2 N/A N/A 

Drag Chute Shuttle shortfall 
Visual Check TPS Shuttle 2A7X3  
Tile and Blanket R-Square Shuttle 2A7X3   
Thermal Barrier Repair Shuttle 2A7X3   
Gap Filler R-Square Shuttle 2A7X3   
Sealant Application Shuttle 2A7X3   
Curing Shuttle 2A7X3   
Recheck TPS Shuttle 2A7X3   
RMLV Systems Check Aircraft 2AXXX 
Waterproof TPS Shuttle 2A7X3   

Parallel Process 2 N/A N/A 
Modular Motor R-Square?  Yes Shuttle 2A6X1 

Connect Motor Stand Shuttle 2A6X1 
Disco Electronics from Stage 1 Shuttle 2A6X1 
Disco Mechanics from Stage 1 Shuttle 2A6X1 
Remove Motor Shuttle 2A6X1 
Disco Stand Shuttle 2A6X1 
Place New Motor and Stand Shuttle 2A6X1 
Mech Connect Motor to Stage 1 Shuttle 2A6X1 
Elect Connect Motor Shuttle 2A6X1 
Connection Test Shuttle 2A6X1 
Disco Stand and Remove Shuttle 2A6X1 

Modular Motor R-Square?  No shuttle  2A6X1 
Engine Diagnostics shuttle 2A6X1 
Pumps and Fuel System shuttle 2A6X4  
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Engine Controls shuttle 2A6X1   
Nozzles shuttle 2A6X4    
Linkage shuttle 2A6X1   

Number of Motors = 3?  Yes   2A6X1   
Engine Checkout shuttle 2A6X1   

Number of Motors = 3?  No   2A6X1   
Engine Check Good?  No, Return to 

Modular Motor R-Square? shuttle 2A6X1   
Engine Check Good?  Yes shuttle 2A6X1   

Parallel Process 1 N/A N/A 
Parallel Process 2 N/A N/A 

Stage 2 Mechanical Connections aircraft 2A5X1 
Stage 2 Area Hardware aircraft 2A5X1 
Buffer Plug R-Square aircraft 2A5X1 

Parallel Process 3 N/A N/A 
Lubricator Check aircraft 2A6X5  
Filters aircraft 2A6X5  

LRU R-Square aircraft 
varies by 
LRU 

Parallel Process 3 N/A N/A 
Hydraulic Condition aircraft 2A6X5  
Filters aircraft 2A6X5  

Parallel Process 2 N/A N/A 

Preplanned Maintenance aircraft 
varies by 
action 

TCTO Actions aircraft 
varies by 
action 

Landing Gear and Tires 
Shuttle/Bom
ber 2A6X6,  

Move to Integration?  No shuttle 2AXXX 
MA Storage Reinspection shuttle 2AXXX 

Move to Integration?  Yes shuttle 2A6X2 
 

Pre Launch Operations (Stiegelmeier) 
Preintegration (Simultaneous with RMLV Maintenance) 
Activity Platform AFSC 
Preintegration?  Yes ICBM N/A 

Attach Handling Fixture to Payload EELV 
2T2X1, 
2A6X2 

Align Payload with Second Stage EELV 
2T2X1, 
2A6X2 

Make Mechanical Connections EELV 
2T2X1, 
2A6X2 
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Make Electrical Connections EELV 2A6X6 
Second Stage and Payload Integration Check ICBM 2A6X6 

Preintegration?  No, Proceed to F Delta II N/A 
Vehicle Integration, Preliminary Considerations 
Activity Platform  AFSC 
(F) Integrate on Pad?  Yes Delta II N/A 

Move Vehicle to Launch Pad, Proceed to G Delta II 2A6X2 
Integrate on Pad?  No EELV N/A 

Vehicle in Integration Facility?  Yes, Proceed to 
(H) EELV N/A 

Vehicle in Integration Facility?  No EELV N/A 
Move Vehicle to Integration Facility, 

Proceed to (H) EELV 2A6X2 
(G) Vehicle Integration, Integrate on Pad 
Activity Platform  AFSC 
Preintegration?  Second Stage and Payload 
Preintegrated ICBM N/A 

Attach Handling Fixture to RMLV Delta II 2A6X2 
Erect and Position RMLV Delta II 2A6X2 
Attach Handling Fixture to Second 

Stage/Payload Delta II 2A6X2 
Position Second Stage/Payload Delta II 2A6X2 

Make Mechanical Connections Delta II 
2T2X1, or 
2A6X2 

Make Electrical Connections Delta II 2A6X6 
Preintegration?  No Preintegration Delta II N/A 

Attach Handling Fixture to RMLV Delta II 2A6X2 
Erect and Position RMLV Delta II 2A6X2 

Attach Handling Fixture to Second Stage  Delta II 
2T2X1, 
2A6X2 

Erect and Position Second Stage Delta II 2A6X2 

Make Mechanical Connections Delta II 
2T2X1, or 
2A6X2 

Make Electrical Connections Delta II 2A6X6 
First, Second Stage Integration Check Delta II 2A6X6 
Payload Clean Room Required?  Yes Delta II N/A 

Prep Clean Room Delta II  
Payload Clean Room Required?  No Delta II N/A 
Attach Payload Handling Equipment Delta II 2A6X2 
Lift and Align Payload Delta II 2A6X2 
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Make Mechanical Connections Delta II 
2T2X1, or 
2A6X2 

Make Electrical Connections Delta II 2A6X6 
Entire Vehicle Integration Check, Proceed to I Delta II 2A6X6 
(H) Vehicle Integration, Integrate off Pad 
Activity Platform  AFSC 
Preintegration?  Second Stage and Payload 
Preintegrated ICBM N/A 

Horizontal or Vertical Integration?  Vertical Atlas V N/A 
Attach Handling Fixture to RMLV Atlas V 2A6X2 
Erect and Position RMLV on MLP Atlas V 2A6X2 
Attach Handling Fixture to Second 

Stage/Payload Atlas V 2A6X2 
Erect and Position Second Stage/Payload Atlas V 2A6X2 

Make Mechanical Connections Atlas V 
2T2X1, or 
2A6X2 

Make Electrical Connections Atlas V 2A6X6 
Preintegration?  Second Stage and Payload 
Preintegrated ICBM N/A 

Horizontal or Vertical Integration?  Horizontal Delta IV N/A 
Attach Handling Equipment to Second 

Stage/Payload Delta IV 2T2X1 
Position/Align Second Stage/Payload Delta IV 2T2X1 

Make Mechanical Connections Delta IV 
2T2X1, or 
2A6X2 

Make Electrical Connections Delta IV 2A6X6 
Preintegration?  No Preintegration   N/A 

Horizontal or Vertical Integration?  Vertical Atlas V N/A 
Attach Handling Fixture to RMLV Atlas V 2A6X2 
Erect and Position RMLV on MLP Atlas V 2A6X2 
Attach Handling Fixture to Second Stage Atlas V 2A6X2 
Erect and Position Second Stage Atlas V 2A6X2 
Make Mechanical Connections Atlas V   
Make Electrical Connections Atlas V 2A6X6 

Preintegration?  No Preintegration   N/A 
Horizontal or Vertical Integration?  Horizontal Delta IV N/A 

Attach Handling Equipment to Second 
Stage Delta IV 2T2X1 

Position/Align Second Stage Delta IV 2T2X1 
Make Electrical Connections Delta IV 2A6X6 

Preintegration?  No Preintegration Delta II N/A 
First and Second Stage Integration Check EELV 2A6X6 
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Launch Now?  No Shuttle N/A 
Storage Shuttle 2A6X2 
Reaccomplish Preflight and Additional Mx Shuttle 2AXXX 

Launch Now?  Yes EELV N/A 
Install Payload Now or On Pad?  On Pad, Go to 

Load Hypergolic Fuel Delta IV N/A 
Install Payload Now or On Pad?  Now Atlas V N/A 
Payload Clean Room Required?  Yes   N/A 

Prep Clean Room   ??? 
Payload Clean Room Required?  No   N/A 
Attach Payload Handling Equipment Atlas V 2T2X1 
Position and Align Payload Atlas V 2T2X1 

Make Mechanical Connections Atlas V 
2T2X1, or 
2A6X2 

Make Electrical Connections Atlas V 2A6X6 
Entire Vehicle Integration Check Atlas V 2A6X6 

Launch Now?  No Shuttle N/A 
Storage Shuttle 2A6X2 

Reaccomplish Preflight and Additional Mx Shuttle 2AXXX 
Launch Now?  Yes EELV N/A 
Load Hypergolic Fuel?  Yes Shuttle N/A 

Load Hypergolic Fuel  Shuttle 2F0X1 
Load Hypergolic Fuel?  No EELV N/A 
Ordnance Installation?  Yes Shuttle N/A 

Install Ordnance Shuttle 2WXX1 
Ordnance Installation?  No Shuttle N/A 
Final Closeouts and Transport Preparations Shuttle 2AXXX 
Attach Transporter Shuttle 2A6X2 
Transport Vehicle to Pad, Proceed to J Shuttle 2A6X2 

(J) Launch Pad Operations for Vehicle Not Integrated on Pad 
Activity Platform  AFSC 
Vertical or Horizontal Integration?  Horizontal Delta IV N/A 

Attach Erecting Mechanism?  Yes Zenit 2 N/A 
Attach Erecting Mechanism  Zenit 2 2A6X2 

Attach Erecting Mechanism?  No Delta IV N/A 
Erect Vehicle and Secure to Launch Platform Delta IV 2A6X2 
Move Transporter/Erecting Mechanism Away 

from Pad Delta IV 2A6X2 
Vertical or Horizontal Integration?  Vertical Atlas V N/A 

Install Payload on Pad?  Yes Delta II N/A 
Payload Clean Room Required?  Yes Delta II N/A 

Prep Clean Room   ??? 
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Payload Clean Room Required?  No Delta II N/A 
Attach Payload Handling Equipment Delta II 2A6X2 
Lift and Align Payload Delta II 2A6X2 

Make Mechanical Connections Delta II 
2T2X1, or 
2A6X2 

Make Electrical Connections Delta II 2A6X6 
Entire Vehicle Integration Check, Proceed to I Delta II 2A6X6 
Install Payload on Pad?  No, Proceed to I Atlas V N/A 

(I) Launch Pad Operations 
Activity Platform  AFSC 
Umbilical Options 1 Shuttle N/A 

Propellant Connections Shuttle 2A6X4 
Umbilical Leak Check Shuttle 2A6X4 
Electrical and Comm Connections Shuttle 2A6X6 
Verify Electrical and Comm Connectivity Shuttle 2A6X6 

Umbilical Options 2 Atlas V N/A 
Propellant Connections Atlas V 2A6X4 
Umbilical Leak Check Atlas V 2A6X4 

Umbilical Options 3 -- no connections required Zenit 2 N/A 
Hypergolic Fuel?  Yes Shuttle N/A 

Load Hypergolic Fuel Shuttle 2F0X1  
Hypergolic Fuel?  No EELV N/A 

RP-1?  Yes 
Atlas 
V/Zenit 2 N/A 

Which Stages Get RP-1?  First Only Atlas V N/A 
Fuel RP-1 First Stage Atlas V 2F0X1  

Which Stages Get RP-1?  First and Second Zenit 2 N/A 
Parallel?  Yes Zenit 2 N/A 

Parallel RP-1 Fueling Zenit 2 N/A 
Fuel RP-1 First Stage Zenit 2 2F0X1  
Fuel RP-1 Second Stage Zenit 2 2F0X1  

End RP-1 Fueling Zenit 2 N/A 
Parallel?  No Zenit 2 N/A 

Fuel RP-1 First Stage Zenit 2 2F0X1 
Fuel RP-1 Second Stage Zenit 2 2F0X1  

RP-1?  No Shuttle N/A 
Ordnance on Pad?  Yes Shuttle N/A 

Install/Arm Ordnance Shuttle 2WXX1 
Ordnance on Pad?  No   N/A 
Final TPS Inspection, Proceed to K Shuttle 2AXXX 
(K) Launch Pad Operations, Propellant Loading 
Activity Platform  AFSC 
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Stages in Parallel, Fuel and Oxidizer in Parallel HLV 2F0X1 
Stage 1/Stage 2 HLV 2F0X1 

Oxidizer/Fuel HLV 2F0X1 
LOX Chill/Fuel Chill HLV 2F0X1 
Load LOX/Load Fuel HLV 2F0X1 

End Propellant Loading HLV 2F0X1 
Stages in Parallel, Fuel and Oxidizer Not in Parallel HLV 2F0X1 

Stage 1/Stage 2 HLV 2F0X1 
LOX Chill HLV 2F0X1 
Load LOX HLV 2F0X1 
Fuel Chill HLV 2F0X1 
Load Fuel HLV 2F0X1 

End Propellant Loading HLV 2F0X1 
Stages Not in Parallel, Fuel and Oxidizer Not in 
Parallel HLV 2F0X1 

RMLV LOX Chill HLV 2F0X1 
Load LOX RMLV HLV 2F0X1 
RMLV Fuel Chill HLV 2F0X1 
Load Fuel RMLV HLV 2F0X1 
Second Stage LOX Chill HLV 2F0X1 
Load LOX Second Stage HLV 2F0X1 
Second Stage Fuel Chill HLV 2F0X1 
Load Fuel Second Stage HLV 2F0X1 
End Propellant Loading HLV 2F0X1 

Terminal Countdown Shuttle 
2AXXX 
(MOC) 

Launch   N/A N/A 
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Appendix B.  Aircraft Maintenance Workcenters Omitted from RMLV 
Organization 

 
Function Justification 

Non-Applicable B-2 Functions 

MS, Egress Section No crew to require Egress equipment support 

MS, Survival Equipment No crew to require Survival Equipment support 

MUNS, Munitions Materiel 
Requirement specifically for a munitions accountabilty 
officer 

MUNS, Munitions 
Accountability 

Requirements specifically to maintain a munitions 
accountability automated system 

MUNS, Mobility Plans No mobility commitment 

MUNS, Production 
No production of payloads or second stages, only 
reception and maintenance 

MUNS, Conventional 
Maintenance 

Specific to maintenance performed on conventional 
munitions 

MUNS, Precision Guided 
Munitions 

Specific to maintenance performed on precision-guided 
munitions 

MUNS, Special Weapons Flight maintains nuclear and other specialized weapons 

MUNS, NOCM Nuclear Ordnance Commodity Management 

AMXS, MXAB 
Entire AMU deleted.  Only one required to support 
RMLV fleet. 

Non-Applicable MQ-1 Functions 

AMXS, Mission Flight 

Primarily responsible for maintenance of Ground 
Control Station and Predator Primary Satellite Link, 
systems that do not apply to the MILEPOST-modeled 
portion of RMLV ground operations 
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Appendix C.  Adjustment for Variances, Overhead, and Shifts 
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Appendix D.  Percent Contribution of B-2 Workcenters 
 

 
 

Note:  Shaded lines indicate functions that comprise more than 1% of total maintenance 

manpower, and were considered significant. 
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Note:  Shaded lines indicate functions that comprise more than 1% of total maintenance 

manpower, and were considered significant. 
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Appendix E.  Alignment of Shuttle Disciplines/System Codes with B-2 LCOM Workcenters 
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Appendix F.  MXG Parametric Adjustments 
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Appendix G.  AFMS Excerpts 
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Appendix H.  FY07 AF Personnel Cost Chart 
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Appendix I.  Enumeration of Design Points 
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Appendix J.  Regression Analysis 
 
All Factors 
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Excluding Surface Area 
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